104 resultados para Cloud Condensation Nucleus
Resumo:
The term “cloud computing” has emerged as a major ICT trend and has been acknowledged by respected industry survey organizations as a key technology and market development theme for the industry and ICT users in 2010. However, one of the major challenges that faces the cloud computing concept and its global acceptance is how to secure and protect the data and processes that are the property of the user. The security of the cloud computing environment is a new research area requiring further development by both the academic and industrial research communities. Today, there are many diverse and uncoordinated efforts underway to address security issues in cloud computing and, especially, the identity management issues. This paper introduces an architecture for a new approach to necessary “mutual protection” in the cloud computing environment, based upon a concept of mutual trust and the specification of definable profiles in vector matrix form. The architecture aims to achieve better, more generic and flexible authentication, authorization and control, based on a concept of mutuality, within that cloud computing environment.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Objective: To assess the efficacy of bilateral pedunculopontine nucleus (PPN) deep brain stimulation (DBS) as a treatment for primary progressive freezing of gait (PPFG). ------ ----- Methods: A patient with PPFG underwent bilateral PPN-DBS and was followed clinically for over 14 months. ------ ----- Results: The PPFG patient exhibited a robust improvement in gait and posture following PPN-DBS. When PPN stimulation was deactivated, postural stability and gait skills declined to pre-DBS levels, and fluoro-2-deoxy-d-glucose positron emission tomography revealed hypoactive cerebellar and brainstem regions, which significantly normalised when PPN stimulation was reactivated. ------ ----- Conclusions: This case demonstrates that the advantages of PPN-DBS may not be limited to addressing freezing of gait (FOG) in idiopathic Parkinson's disease. The PPN may also be an effective DBS target to address other forms of central gait failure.
Resumo:
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
A patient-centric DRM approach is proposed for protecting privacy of health records stored in a cloud storage based on the patient's preferences and without the need to trust the service provider. Contrary to the current server-side access control solutions, this approach protects the privacy of records from the service provider, and also controls the usage of data after it is released to an authorized user.
Resumo:
Emerging from the challenge to reduce energy consumption in buildings is the need for energy simulation to be used more effectively to support integrated decision making in early design. As a critical response to a Green Star case study, we present DEEPA, a parametric modeling framework that enables architects and engineers to work at the same semantic level to generate shared models for energy simulation. A cloud-based toolkit provides web and data services for parametric design software that automate the process of simulating and tracking design alternatives, by linking building geometry more directly to analysis inputs. Data, semantics, models and simulation results can be shared on the fly. This allows the complex relationships between architecture, building services and energy consumption to be explored in an integrated manner, and decisions to be made collaboratively.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.