150 resultados para Cardiac MR
Resumo:
Background: Nurse-led telephone follow-up offers a relatively inexpensive method of delivering education and support for assisting recovery in the early discharge period; however, its efficacy is yet to be determined. Aim: To perform a critical integrative review of the research literature addressing the effectiveness of nurse-led telephone interventions for people with coronary heart disease (CHD). Methods: A literature search of five health care databases; Sciencedirect, Cumulative Index to Nursing and Allied Health Literature, Pubmed, Proquest and Medline to identify journal articles between 1980 and 2009. People with cardiac disease were considered for inclusion in this review. The search yielded 128 papers, of which 24 met the inclusion criteria. Results: A total of 8330 participants from 24 studies were included in the final review. Seven studies demonstrated statistically significant differences in all outcomes measured, used two group experimental research design and valid and reliable instruments. Some positive effects were detected in eight studies in regards to nurse-led telephone interventions for people with cardiac disease and no differences were detected in nine studies. Discussion: Studies with some positive effects generally had stronger research designs, large samples, used valid and reliable instruments and extensive nurse-led educative interventions. Conclusion: The results suggest that people with cardiac disease showed some benefits from nurse-led/delivered telephone interventions. More rigorous research into this area is needed.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Background: People with cardiac disease and type 2 diabetes have higher hospital readmission rates (22%)compared to those without diabetes (6%). Self-management is an effective approach to achieve better health outcomes; however there is a lack of specifically designed programs for patients with these dual conditions. This project aims to extend the development and pilot test of a Cardiac-Diabetes Self-Management Program incorporating user-friendly technologies and the preparation of lay personnel to provide follow-up support. Methods/Design: A randomised controlled trial will be used to explore the feasibility and acceptability of the Cardiac-Diabetes Self-Management Program incorporating DVD case studies and trained peers to provide follow-up support by telephone and text-messaging. A total of 30 cardiac patients with type 2 diabetes will be randomised, either to the usual care group, or to the intervention group. Participants in the intervention group will received the Cardiac-Diabetes Self-Management Program in addition to their usual care. The intervention consists of three faceto- face sessions as well as telephone and text-messaging follow up. The face-to-face sessions will be provided by a trained Research Nurse, commencing in the Coronary Care Unit, and continuing after discharge by trained peers. Peers will follow up patients for up to one month after discharge using text messages and telephone support. Data collection will be conducted at baseline (Time 1) and at one month (Time 2). The primary outcomes include self-efficacy, self-care behaviour and knowledge, measured by well established reliable tools. Discussion: This paper presents the study protocol of a randomised controlled trial to pilot evaluates a Cardiac- Diabetes Self-Management program, and the feasibility of incorporating peers in the follow-ups. Results of this study will provide directions for using such mode in delivering a self-management program for patients with both cardiac condition and diabetes. Furthermore, it will provide valuable information of refinement of the intervention program.
Resumo:
Previous studies exploring the incidence and readmission rates of cardiac patients admitted to a coronary care unit (CCU) with type 2 diabetes [1] have been undertaken by the first author. Interviews of these patients regarding their experiences in managing their everyday conditions [2] provided the basis for developing the initial cardiac–diabetes self-management programme (CDSMP) [3]. Findings from each of these previous studies highlighted the complexity of self-management for patients with both conditions and contributed to the creation of a new self-management programme, the CDSMP, based on Bandura’s (2004) self-efficacy theory [4]. From patient and staff feedback received for the CDSMP [3], it became evident that further revision of the programme was needed to improve self-management levels of patients and possibility of incorporating methods of information technology (IT). Little is known about the applicability of different methods of technology for delivering self-management programmes for patients with chronic diseases such as those with type 2 diabetes and cardiac conditions. Although there is some evidence supporting the benefits and the great potential of using IT in supporting self-management programmes, it is not strong, and further research on the use of IT in such programmes is recommended [5–7]. Therefore, this study was designed to pilot test feasibility of the CDSMP incorporating telephone and text-messaging as follow-up approaches.
Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images
Resumo:
In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.