627 resultados para Car following models
Resumo:
This paper studies traffic hysteresis arising in traffic oscillations from a behavioral perspective. It is found that the occurrence and type of traffic hysteresis is closely correlated with driver behavior when experiencing traffic oscillations and with the time driver reaction begins relative to the starting deceleration wave. Statistical results suggest that driver behavior is different depending on its position along the oscillation. This suggests that different car-following models should be used inside the different stages of an oscillation in order to replicate realistic congestion features.
Resumo:
For the evaluation, design, and planning of traffic facilities and measures, traffic simulation packages are the de facto tools for consultants, policy makers, and researchers. However, the available commercial simulation packages do not always offer the desired work flow and flexibility for academic research. In many cases, researchers resort to designing and building their own dedicated models, without an intrinsic incentive (or the practical means) to make the results available in the public domain. To make matters worse, a substantial part of these efforts pertains to rebuilding basic functionality and, in many respects, reinventing the wheel. This problem not only affects the research community but adversely affects the entire traffic simulation community and frustrates the development of traffic simulation in general. For this problem to be addressed, this paper describes an open source approach, OpenTraffic, which is being developed as a collaborative effort between the Queensland University of Technology, Australia; the National Institute of Informatics, Tokyo; and the Technical University of Delft, the Netherlands. The OpenTraffic simulation framework enables academies from geographic areas and disciplines within the traffic domain to work together and contribute to a specific topic of interest, ranging from travel choice behavior to car following, and from response to intelligent transportation systems to activity planning. The modular approach enables users of the software to focus on their area of interest, whereas other functional modules can be regarded as black boxes. Specific attention is paid to a standardization of data inputs and outputs for traffic simulations. Such standardization will allow the sharing of data with many existing commercial simulation packages.
Resumo:
This paper comprehensively reviews recent developments in modeling lane-changing behavior. The major lane changing models in the literature are categorized into two groups: models that aim to capture the lane changing decision-making process, and models that aim to quantify the impact of lane changing behavior on surrounding vehicles. The methodologies and important features (including their limitations) of representative models in each category are outlined and discussed. Future research needs are determined.
Resumo:
Published accounts of behavioural interventions for grief have relied on exposure and habituation to grief cues as the primary strategy. Such an approach is excessively narrow, since it does not adequately confront the challenges that are posed by a bereavement. Many people cope with a bereavement by themselves, and for those, intervention may well be counterproductive. A cognitive-behavioural intervention, following models for depression/anxiety, can assist vulnerable individuals obtain a more rapid or complete adjustment. The proposed approach differs from dynamic treatments by placing less emphasis on defensive behavior, insight, and interpretation and more emphasis on training of coping skills.
Resumo:
In this paper we identify the origins of stop-and-go (or slow-and-go) driving and measure microscopic features of their propagations by analyzing vehicle trajectories via Wavelet Transform. Based on 53 oscillation cases analyzed, we find that oscillations can be originated by either lane-changing maneuvers (LCMs) or car-following behavior (CF). LCMs were predominantly responsible for oscillation formations in the absence of considerable horizontal or vertical curves, whereas oscillations formed spontaneously near roadside work on an uphill segment. Regardless of the trigger, the features of oscillation propagations were similar in terms of propagation speed, oscillation duration, and amplitude. All observed cases initially exhibited a precursor phase, in which slow-and-go motions were localized. Some of them eventually transitioned into a well developed phase, in which oscillations propagated upstream in queue. LCMs were primarily responsible for the transition, although some transitions occurred without LCMs. Our findings also suggest that an oscillation has a regressive effect on car following behavior: a deceleration wave of an oscillation affects a timid driver (with larger response time and minimum spacing) to become less timid and an aggressive driver less aggressive, although this change may be short-lived. An extended framework of Newell’s CF is able to describe the regressive effects with two additional parameters with reasonable accuracy, as verified using vehicle trajectory data.
Resumo:
Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.
Resumo:
In microscopic traffic simulators, the interaction between vehicles is considered. The dynamics of the system then becomes an emergent property of the interaction between its components. Such interactions include lane-changing, car-following behaviours and intersection management. Although, in some cases, such simulators produce realistic prediction, they do not allow for an important aspect of the dynamics, that is, the driver-vehicle interaction. This paper introduces a physically sound vehicle-driver model for realistic microscopic simulation. By building a nanoscopic traffic simulation model that uses steering angle and throttle position as parameters, the model aims to overcome unrealistic acceleration and deceleration values, as found in various microscopic simulation tools. A physics engine calculates the driving force of the vehicle, and the preliminary results presented here, show that, through a realistic driver-vehicle-environment simulator, it becomes possible to model realistic driver and vehicle behaviours in a traffic simulation.
Resumo:
This paper investigates the effects of lane-changing in driver behavior by measuring (i) the induced transient behavior and (ii) the change in driver characteristics, i.e., changes in driver response time and minimum spacing. We find that the transition largely consists of a pre-insertion transition and a relaxation process. These two processes are different but can be reasonably captured with a single model. The findings also suggest that lane-changing induces a regressive effect on driver characteristics: a timid driver (characterized by larger response time and minimum spacing) tends to become less timid and an aggressive driver less aggressive. We offer an extension to Newell’s car-following model to describe this regressive effect and verify it using vehicle trajectory data.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Vehicles are able to communicate on the local traffic state in real time, which could result in an automatic and therefore better reaction to the mechanism of traffic jam formation. An upstream single hop radio broadcast network can improve the perception of each cooperative driver within radio range and hence the traffic stability. The impact of a cooperative law on traffic congestion appearance is investigated, analytically and through simulation. Ngsim field data is used to calibrate the Optimal Velocity with Relative Velocity (OVRV) car following model and the MOBIL lane-changing model is implemented. Assuming that congestion can be triggered either by a perturbation in the instability domain or by a critical lane changing behavior, the calibrated car following behavior is used to assess the impact of a microscopic cooperative law on abnormal lane changing behavior. The cooperative law helps reduce and delay traffic congestion as it increases traffic flow stability.
Resumo:
This research investigated the effectiveness of using an eco-driving strategy at urban signalised intersections from both the individual driver and the traffic flow perspective. The project included a field driving experiment and a series of traffic simulation investigations. The study found that the prevailing eco-driving strategy has negative impacts on traffic mobility and environmental performance when the traffic is highly congested. An improved eco-driving strategy has been developed to mitigate these negative impacts.
Resumo:
The deployment of new emerging technologies, such as cooperative systems, allows the traffic community to foresee relevant improvements in terms of traffic safety and efficiency. Autonomous vehicles are able to share information about the local traffic state in real time, which could result in a better reaction to the mechanism of traffic jam formation. An upstream single-hop radio broadcast network can improve the perception of each cooperative driver within a specific radio range and hence the traffic stability. The impact of vehicle to vehicle cooperation on the onset of traffic congestion is investigated analytically and through simulation. A next generation simulation field dataset is used to calibrate the full velocity difference car-following model, and the MOBIL lane-changing model is implemented. The robustness of the calibration as well as the heterogeneity of the drivers is discussed. Assuming that congestion can be triggered either by the heterogeneity of drivers' behaviours or abnormal lane-changing behaviours, the calibrated car-following model is used to assess the impact of a microscopic cooperative law on egoistic lane-changing behaviours. The cooperative law can help reduce and delay traffic congestion and can have a positive effect on safety indicators.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.
Resumo:
Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered.
Resumo:
Introduction: Evidence suggests a positive association between quality of life (QOL). and overall survival(OS). among metastatic breast cancer (BC). patients, although the relationship in early-stage BC is unclear. This work examines the association between QOL and OS following a diagnosis of early-stage BC. ----- Methods: A population-based sample of Queensland women (n=287). with early-stage, invasive, unilateral BC, were prospectively observed for a median of 6.6 years. QOL was assessed at six and 18 months post-diagnosis using the Functional Assessment of Cancer Therapy, Breast FACT-B+4. questionnaire. Raw scores for the FACT-B+4 scales were computed and individuals were categorised according to whether QOL declined, remained stable or improved over time. OS was measured from the date of diagnosis to the date of death or was censored at the date of last follow-up. Risk ratios (RR) and 95% confidence intervals (CI). for the association between QOL and OS were obtained using Cox proportional hazards survival models adjusted for confounding characteristics. ----- Results: A total of 27 (9.4%). women died during the follow-up period. Three baseline QOL scales (emotional, general and overall QOL) were significantly associated with OS, with RRs ranging between 0.89 95% CI: 0.81, 0.98; P=0.01. and 0.98 (95% CI: 0.96, 0.99; P=0.03),indicating a 2%-11% reduced risk of death for every one unit increase in QOL. When QOL was categorised according to changes between six and 18 months post-diagnosis, analyses showed that for those who experienced declines in functional and physical QOL, risk of death increased by two- (95% CI: 1.43, 12.52; P<0.01) and four-fold (95% CI: 1.15, 7.19; P=0.02), respectively. Conclusions: This work indicates that specific QOL scales at six months post-diagnosis, and changes in certain QOL scales over the subsequent 12-month period (as measured by the FACT-B+4), are associated with overall survival in women with early-stage breast cancer.