33 resultados para CFRP invecchiamento


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strengthening of metallic structures using carbon fibre reinforced polymer (CFRP) has become a smart strengthening option over the conventional strengthening method. Transverse impact loading due to accidental vehicular collision can lead to the failure of existing steel hollow tubular columns. However, knowledge is very limited on the behaviour of CFRP strengthened steel members under dynamic impact loading condition. This paper deals with the numerical simulation of CFRP strengthened square hollow section (SHS) steel columns under transverse impact loading to predict the behaviour and failure modes. The transverse impact loading is simulated using finite element (FE) analysis based on numerical approach. The accuracy of the FE modelling is ensured by comparing the predicted results with available experimental tests. The effects of impact velocity, impact mass, support condition, axial loading and CFRP thickness are examined through detail parametric study. The impact simulation results indicate that the strengthening technique shows an improved impact resistance capacity by reducing lateral displacement of the strengthened column about 58% compared to the bare steel column. Axial loading plays an important role on the failure behaviour of tubular column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a nonlinear finite element (FE) model for the analysis of very high strength (VHS) steel hollow sections wrapped by high modulus carbon fibre rein forced polymer (CFRP) sheets. The bond strength of CFRP wrapped VHS circular steel hollow section under tension is investigated using the FE model. The three dimensional FE model by Nonlinear static analysis has been carried out by Strand 7 finite element software. The model is validated by the experimental data obtained from Fawzia et al [1]. A detail parametric study has been performed to examine the effect of number of CFRP layers, different diameters of VHS steel tube and different bond lengths of CFRP sheet. The analytical model developed by Fawzia et al. [1] has been used to determine the load carrying capacity of different diameters of CFRP strengthened VHS steel tube by using the capacity from each layer of CFRP sheet. The results from FE model have found in reasonable agreement with the analytical model developed by Fawzia et al [1]. This validation was necessary because the analytical model by Fawzia et al [1] was developed by using only one diameter of VHS steel tube and fixed (five) number of CFRP layers. It can be concluded that the developed analytical model is valid for CFRP strengthened VHS steel tubes with diameter range of 38mm to 100mm and CFRP layer range of 3 to 5 layers. Based on the results it can also be concluded that the effective bond length is consistent for different diameters of steel tubes and different layers of CFRP. Three layers of CFRP is considered most effective wrapping scheme due to the cost effectiveness. Finally the distribution of longitudinal and hoop stress has been determined by the finite element model for different diameters of CFRP strengthened VHS steel tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Galvanic corrosion is a common phenomenon in Carbon Fibre Reinforced Polymer (CFRP) strengthened steel structures in wet environments and submerged conditions, which reduces durability by weakening the bond between the CFRP and steel substrate. CFRP materials have already been proven to have superior resistance to corrosion and chemical attacks but the adhesive and steel are generally affected by long-term exposure to moisture, especially in conjunction with salts resulting from deicing of ocean spray. This paper presents the results of a research program to improve the durability of CFRP strengthened steel circular hollow section (CHS) members by treating the steel surface with an epoxy based adhesion promoter and inserting Glass Fibre Reinforced Polymer (GFRP) as a galvanic corrosion barrier against simulated sea water. It also presents the effects of accelerated corrosion on the bond of CFRP strengthened hollow steel members. The program consisted of four CFRP strengthened steel beams and one unstrengthened steel beam. Two strengthened beams were used as control while the other two beams were exposed to a highly corrosive environment to induce accelerated corrosion. The corrosion rate was considered 10% which represents a moderate level of loss in the cross-sectional area of the steel tube throughout its intended service life. The beams were then loaded to failure under four-point bending. The research findings indicate that the accelerated corrosion adversely affected the ultimate strength of the conditioned beams and the embedded glass fibre enhanced the bond durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reveals the effects of layer orientation on structural behaviour of three layers configured (LHL, HHL, LLH) CFRP strengthened circular hollow section (CHS) members subjected to bending. The beams were loaded to failure under four-point bending. The structural behaviour of the CFRP strengthened tubular steel beams with various layer orientations were presented in terms of failure load, stiffness, composite beam action and modes of failure. The LHL and LLH layers oriented strengthened beams perform slightly better than HHL layers oriented strengthened beams. The LHL and LLH layers oriented treated beams showed very similar structural behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In strengthening systems, the CFRP (Carbon Fibre Reinforced Polymer) materials typically have excellent resistance against environmental conditions; however, the performance of adhesives between CFRP and steel is generally affected by various environmental conditions such as marine environment, cold and hot weather. This paper presents the comparative durability study of CFRP strengthened tubular steel structures by using two different adhesives such as MBrace saturant and Araldite K630 under four-point bending. The program consisted of testing twelve CFRP strengthened specimens having treated with epoxy based adhesion promoter, untreated surface and one unstrengthened specimen and conditioned under cold weather for 3 and 6 months to determine the environmental durability. The beams were then loaded to failure in quasi-static manner under four-point bending. The structural responses of CFRP strengthened tubular steel beams were compared in terms of failure load, stiffness and modes of failure. The research findings show that the cold weather immersion had adversely affected the durability of CFRP strengthened steel members. Design factor is also proposed to address the short-terms durability performance under cold weather.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete filled steel tubular (CFST) columns are increasingly used in bridge piers and high-rise buildings due to their excellent axial load bearing capacity. These columns may experience severe damage or failure due to transverse impact of vehicle collisions. In this study, numerical investigation is carried out to evaluate the effect of carbon fibre reinforced polymer (CFRP) strengthening CFST columns under vehicular impact. The CFRP composites damage mechanisms are simulated to account four different failure criteria. The cohesive elements are introduced as interface element to properly simulate the adhesively bonded regime. Simplified vehicle model is also developed to represent real vehicle behaviour. The FE analysis results show that externally bonded CFRP composites improve the impact resistance capacity compared to bare CFST column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The durability of carbon fibre reinforced polymer (CFRP) strengthened steel circular hollow section (CHS) members has now become a real challenge to researchers. In addition, various parameters that may affect the durability of such members have not been revealed yet. This paper presents brief experimental results and the first finite element (FE) approach of CFRP strengthened steel CHS beams conditioned in simulated sea water, along with an accelerated corrosion environment at ambient (24 OC ± 4 OC) and 50 OC temperatures. The beams were loaded to failure under four-point bending. It was found that the strength and stiffness reduced significantly after conditioning in an accelerated corrosion environment. Numerical simulation is implemented using the ABAQUS static general approach. A cohesive element was utilised to model the interface element and an 8-node quadrilateral in-plane general-purpose continuum shell was used to model CFRP elements. A mixed mode cohesive law was deployed for all the three components of stresses in the proposed FE approach, which were one normal component and two shear components. The validity of the FE models was ascertained by comparing the ultimate load and load vs deflection response from experimental results. A range of parametric studies were conducted to investigate the effects of bond length, adhesive types, thickness and diameter of tubes. The results of parametric studies indicated that the adhesive with high tensile modulus performed better and durability design factors varied from section to section.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an experimental and numerical program to investigate the circular hollow section (CHS) beams, strengthened using Carbon Fibre Reinforced Polymer (CFRP) sheets. The circular hollow shaped steel beams bonded with different CFRP layer orientations were tested under four-point bending. The mid-span deflection, service load and failure load were recorded. The LHL (where L, first inner longitudinal layer, H, second hoop layer and L, third outer longitudinal layer) and LLH (where L, first inner longitudinal layer, L, second longitudinal layer and H, third outer hoop layer) layer oriented strengthened beams perform slightly better than HHL (where H, first inner hoop layer, H, second hoop layer and L, third outer longitudinal layer) layer oriented strengthened beams. The LHL and LLH layer oriented treated beams showed very similar structural behaviour. Numerical analyses were then conducted on the CFRP strengthened steel CHS beams. The validity of the models has been assessed by comparing the failure loads and mid-span deflections. The effects of various parameters such as bond length, section types, tensile modulus of CFRP, adhesive layer thickness and adhesive types have been studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was a step forward in developing bond strength of CFRP strengthened steel hollow sections under tension loads. The studies have revealed the ultimate load carrying capacity of the CFRP strengthened steel hollow sections and the stress distribution for different orientations of the CFRP sheet at different layers. This thesis presents a series of experimental and finite element analysis to determine a good understanding of the bond characteristics of CFRP strengthened steel hollow sections.