60 resultados para C-REACTIVE PROTEIN
Resumo:
Aim: To determine the effects of an acute multi-nutrient supplement on physiological, performance and recovery responses to intermittent-sprint running and muscular damage during rugby union matches. Methods: Using a randomised, double-blind, cross-over design, twelve male rugby union players ingested either 75 g of a comprehensive multi-nutrient supplement (SUPP), [Musashi] or 1 g of a taste and carbohydrate matched placebo (PL) for 5 days pre-competition. Competitive rugby union game running performance was then measured using 1 Hz GPS data (SPI10, SPI elite, GPSports), in addition to associated blood draws, vertical jump assessments and ratings of perceived muscular soreness (MS) pre, immediately post and 24 h post-competition. Baseline (BL) GPS data was collected during six competition rounds preceding data collection. Results: No significant differences were observed between supplement conditions for all game running, vertical jump, and ratings of perceived muscular soreness. However, effect size analysis indicated SUPP ingestion increased 1st half very high intensity running (VHIR) mean speed (d = 0.93) and 2nd half relative distance (m/min) (d = 0.97). Further, moderate increases in 2nd half VHIR distance (d = 0.73), VHIR m/min (d = 0.70) and VHIR mean speed (d = 0.56) in SUPP condition were also apparent. Moreover, SUPP demonstrated significant increases in 2nd half dist m/min, total game dist m/min and total game HIR m/min compared with BL data (P < 0.05). Further, large ES increases in VHIR time (d = 0.88) and moderate increases in 2nd half HIR m/min (d = 0.65) and 2nd half VHIR m/min (d = 0.74) were observed between SUPP and BL. Post-game aspartate aminotransferase (AST) (d = 1.16) and creatine kinase (CK) (d = 0.97) measures demonstrated increased ES values with SUPP, while AST and CK values correlated with 2nd half VHIR distance (r = −0.71 and r = −0.76 respectively). Elevated c-reactive protein (CRP) was observed post-game in both conditions, however was significantly blunted with SUPP (P = 0.05). Additionally, pre-game (d = 0.98) and post-game (d = 0.96) increases in cortisol (CORT) were apparent with SUPP. No differences were apparent between conditions for pH, lactate, glucose, HCO3, vertical jump assessments and MS (P > 0.05). Conclusion: These findings suggest SUPP may assist in the maintenance of VHIR speeds and distances covered during rugby union games, possibly via the buffering qualities of SUPP ingredients (i.e. caffeine, creatine, bicarbonate). While the mechanisms for these findings are unclear, the similar pH between conditions despite additional VHIR during SUPP may support this conclusion. Finally, correlations between increased work completed at very high intensities and muscular degradation in SUPP conditions, may mask any anti-catabolic properties of supplementation.
Resumo:
AIMS: Increases in inflammatory markers, hepatic enzymes and physical inactivity are associated with the development of the metabolic syndrome (MetS). We examined whether inflammatory markers and hepatic enzymes are correlated with traditional risk factors for MetS and studied the effects of resistance training (RT) on these emerging risk factors in individuals with a high number of metabolic risk factors (HiMF, 2.9 +/- 0.8) and those with a low number of metabolic risk factors (LoMF, 0.5 +/- 0.5). METHODS: Twenty-eight men and 27 women aged 50.8 +/- 6.5 years (mean +/- sd) participated in the study. Participants were randomized to four groups, HiMF training (HiMFT), HiMF control (HiMFC), LoMF training (LoMFT) and LoMF control (LoMFC). Before and after 10 weeks of RT [3 days/week, seven exercises, three sets with intensity gradually increased from 40-50% of one repetition maximum (1RM) to 75-85% of 1RM], blood samples were obtained for the measurement of pro-inflammatory cytokines, C-reactive protein (CRP), gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT). RESULTS: At baseline, HiMF had higher interleukin-6 (33.9%), CRP (57.1%), GGT (45.2%) and ALT (40.6%) levels, compared with LoMF (all P < 0.05). CRP, GGT and ALT correlated with the number of risk factors (r = 0.48, 0.51 and 0.57, respectively, all P < 0.01) and with other anthropometric and clinical measures (r range from 0.26 to 0.60, P < 0.05). RT did not significantly alter inflammatory markers or hepatic enzymes (all P > 0.05). CONCLUSIONS: HiMF was associated with increased inflammatory markers and hepatic enzyme concentrations. RT did not reduce inflammatory markers and hepatic enzymes in individuals with HiMF.
Resumo:
PURPOSE: This study examined the effects of overnight sleep deprivation on recovery following competitive rugby league matches. METHODS: Eleven male, amateur rugby league players performed two competitive matches, followed by either a normal night's sleep (~8h; CONT) or a sleep deprived night (~0h; SDEP) in a randomised fashion. Testing was conducted the morning of the match, and immediately post-match, 2h post and the next morning (16h post-match). Measures included counter-movement jump (CMJ) distance, knee extensor maximal voluntary contraction (MVC), voluntary activation (VA), venous blood creatine kinase (CK) and C-reactive protein (CRP), perceived muscle soreness and a word-colour recognition cognitive function test. Percent change between post- and 16h post-match was reported to determine the effect of the intervention the next morning. RESULTS: Large effects indicated a greater post- to 16h post-match percentage decline in CMJ distance following SDEP compared to CONT (P=0.10-0.16; d=0.95-1.05). Similarly, the percentage decline in incongruent word-colour reaction times were increased in SDEP trials (P=0.007; d=1.75). Measures of MVC did not differ between conditions (P=0.40-0.75; d=0.13-0.33), though trends for larger percentage decline in VA were detected in SDEP (P=0.19; d=0.84). Further, large effects indicated higher CK and CRP responses 16h post-match during SDEP compared to CONT (P=0.11-0.87; d=0.80-0.88). CONCLUSIONS: Sleep deprivation negatively affected recovery following a rugby league match, specifically impairing CMJ distance and cognitive function. Practitioners should promote adequate post-match sleep patterns or adjust training demands the next day to accommodate the altered physical and cognitive state following sleep deprivation.
Resumo:
Interest in the relationship between inflammation and oxidative stress has increased dramatically in recent years, not only within the clinical setting but also in the fields of exercise biochemistry and immunology. Inflammation and oxidative stress share a common role in the etiology of a variety of chronic diseases. During exercise, inflammation and oxidative stress are linked via muscle metabolism and muscle damage. Because oxidative stress and inflammation have traditionally been associated with fatigue and impaired recovery from exercise, research has focused on nutritional strategies aimed at reducing these effects. In this review, we have evaluated the findings of studies involving antioxidant supplementation on alterations in markers of inflammation (e.g., cytokines, C-reactive protein and cortisol). This review focuses predominantly on the role of reactive oxygen and nitrogen species generated from muscle metabolism and muscle damage during exercise and on the modulatory effects of antioxidant supplements. Furthermore, we have analyzed the influence of factors such as the dose, timing, supplementation period and bioavailability of antioxidant nutrients.
Resumo:
We investigated the effects of an Ironman triathlon race on markers of muscle damage, inflammation and heat shock protein 70 (HSP70). Nine well-trained male triathletes (mean +/- SD age 34 +/- 5 years; VO(2peak) 66.4 ml kg(-1) min(-1)) participated in the 2004 Western Australia Ironman triathlon race (3.8 km swim, 180 km cycle, 42.2 km run). We assessed jump height, muscle strength and soreness, and collected venous blood samples 2 days before the race, within 30 min and 14-20 h after the race. Plasma samples were analysed for muscle proteins, acute phase proteins, cytokines, heat shock protein 70 (HSP70), and clinical biochemical variables related to dehydration, haemolysis, liver and renal functions. Muscular strength and jump height decreased significantly (P < 0.05) after the race, whereas muscle soreness and the plasma concentrations of muscle proteins increased. The cytokines interleukin (IL)-1 receptor antagonist, IL-6 and IL-10, and HSP70 increased markedly after the race, while IL-12p40 and granulocyte colony-stimulating factor (G-CSF) were also elevated. IL-4, IL-1beta and tumour necrosis factor-alpha did not change significantly, despite elevated C-reactive protein and serum amyloid protein A on the day after the race. Plasma creatinine, uric acid and total bilirubin concentrations and gamma-glutamyl transferase activity also changed after the race. In conclusion, despite evidence of muscle damage and an acute phase response after the race, the pro-inflammatory cytokine response was minimal and anti-inflammatory cytokines were induced. HSP70 is released into the circulation as a function of exercise duration.
Resumo:
BACKGROUND/OBJECTIVES: Recent work suggests that macronutrients are pro-inflammatory and promote oxidative stress. Reports of postprandial regulation of total adiponectin have been mixed, and there is limited information regarding postprandial changes in high molecular weight (HMW) adiponectin. The aim of this study was to assess the effect of a standardised high-fat meal on metabolic variables, adiponectin (total and HMW), and markers of inflammation and oxidative stress in: (i) lean, (ii) obese non-diabetic and (iii) men with type 2 diabetes mellitus (T2DM). SUBJECTS/METHODS: Male subjects: lean (n=10), obese (n=10) and T2DM (n=10) were studied for 6 h following both a high-fat meal and water control. Metabolic variables (glucose, insulin, triglycerides), inflammatory markers (interleukin-6 (IL6), tumour necrosis factor (TNF)α, high-sensitivity C-reactive protein (hsCRP), nuclear factor (NF)κB expression in peripheral blood mononuclear cells (p65)), indicators of oxidative stress (oxidised low density lipoprotein (oxLDL), protein carbonyl) and adiponectin (total and HMW) were measured. RESULTS: No significant changes in TNFα, p65, oxLDL or protein carbonyl concentrations were observed. Overall, postprandial IL6 decreased in subjects with T2DM but increased in lean subjects, whereas hsCRP decreased in the lean cohort and increased in obese subjects. There was no overall postprandial change in total or HMW adiponectin in any group. Total adiponectin concentrations changed over time following the water control, and the response was significantly different in lean subjects compared with subjects with T2DM (P=0.04). CONCLUSIONS: No consistent significant postprandial inflammation, oxidative stress or regulation of adiponectin was observed in this study. Findings from the water control suggest differential basal regulation of total adiponectin in T2DM compared with lean controls.
Resumo:
Objective To evaluate the effectiveness of the 7-valent pneumococcal conjugate vaccine (PCV7) in preventing pneumonia, diagnosed radiologically according to World Health Organization (WHO) criteria, among indigenous infants in the Northern Territory of Australia. Methods We conducted a historical cohort study of consecutive indigenous birth cohorts between 1 April 1998 and 28 February 2005. Children were followed up to 18 months of age. The PCV7 programme commenced on 1 June 2001. All chest X-rays taken within 3 days of any hospitalization were assessed. The primary endpoint was a first episode of WHO-defined pneumonia requiring hospitalization. Cox proportional hazards models were used to compare disease incidence. Findings There were 526 pneumonia events among 10 600 children - an incidence of 3.3 per 1000 child-months; 183 episodes (34.8%) occurred before 5 months of age and 247 (47.0%) by 7 months. Of the children studied, 27% had received 3 doses of vaccine by 7 months of age. Hazard ratios for endpoint pneumonia were 1.01 for 1 versus 0 doses; 1.03 for 2 versus 0 doses; and 0.84 for 3 versus 0 doses. Conclusion There was limited evidence that PCV7 reduced the incidence of radiologically confirmed pneumonia among Northern Territory indigenous infants, although there was a non-significant trend towards an effect after receipt of the third dose. These findings might be explained by lack of timely vaccination and/or occurrence of disease at an early age. Additionally, the relative contribution of vaccine-type pneumococcus to severe pneumonia in a setting where multiple other pathogens are prevalent may differ with respect to other settings where vaccine efficacy has been clearly established.
Resumo:
BACKGROUND: Over the past 10 years, the use of saliva as a diagnostic fluid has gained attention and has become a translational research success story. Some of the current nanotechnologies have been demonstrated to have the analytical sensitivity required for the use of saliva as a diagnostic medium to detect and predict disease progression. However, these technologies have not yet been integrated into current clinical practice and work flow. CONTENT: As a diagnostic fluid, saliva offers advantages over serum because it can be collected noninvasively by individuals with modest training, and it offers a cost-effective approach for the screening of large populations. Gland-specific saliva can also be used for diagnosis of pathology specific to one of the major salivary glands. There is minimal risk of contracting infections during saliva collection, and saliva can be used in clinically challenging situations, such as obtaining samples from children or handicapped or anxious patients, in whom blood sampling could be a difficult act to perform. In this review we highlight the production of and secretion of saliva, the salivary proteome, transportation of biomolecules from blood capillaries to salivary glands, and the diagnostic potential of saliva for use in detection of cardiovascular disease and oral and breast cancers. We also highlight the barriers to application of saliva testing and its advancement in clinical settings. SUMMARY: Saliva has the potential to become a first-line diagnostic sample of choice owing to the advancements in detection technologies coupled with combinations of biomolecules with clinical relevance. (C) 2011 American Association for Clinical Chemistry
Resumo:
Human saliva mirrors body’s health and well-being and many of the biomolecules present in blood or urine can also be found in salivary secretions. However, biomolecular concentrations in saliva are usually one tenth to one thousandth of the levels in blood (Pfaffe et al., 2011). Sensitive detection technology platforms are therefore required to detect biomolecules in saliva. Another road block to the advancement of salivary diagnostics is the lack of information related to healthy state saliva vs. a diseased saliva, baseline levels and reference ranges and diurnal variations. Saliva has numerous advantages over blood or urine as a diagnostic fluid: (a) the non-invasive nature of sample collection and the simple, safe, painless and cost-effective methods to collect it; (b) unskilled personnel can collect saliva samples at multiple time points; and (c) the total protein concentration is approximately a quarter of that is present in plasma, which makes it easier to investigate low abundance proteins (Pfaffe et al., 2011). Currently, saliva assays are routinely used to determine, diseases such as HIV, drugs and substances of abuse to provide information on exposure and give qualitative information on the type of illicit drug used (Kintz et al., 2009), cortisol levels for diagnosing Cushing’s syndrome (Doi et al., 2008), and use for biomonitoring of exposure to chemicals (Caporossi et al., 2010) to measure hormones (Gröschl, 2009)....
Resumo:
Background: Human saliva mirrors the body's health and can be collected non-invasively, does not require specialized skills and is suitable for large population based screening programs. The aims were twofold: to evaluate the suitability of commercially available saliva collection devices for quantifying proteins present in saliva and to provide levels for C-reactive protein (CRP), myoglobin, and immunoglobin E (IgE) in saliva of healthy individuals as a baseline for future studies. Methods: Saliva was collected from healthy volunteers (n = 17, ages 18-33 years). The following collection methods were evaluated: drool; Salimetrics (R) Oral Swab (SOS); Salivette (R) Cotton and Synthetic (Sarstedt) and Greiner Bio-One Saliva Collection System (GBO SCS (R)). We used AlphaLISA (R) assays to measure CRP, IgE and myoglobin levels in human saliva. Results: Significant (p<0.05) differences in the salivary flow rates were observed based on the method of collection, Le. salivary flow rates were significantly lower (p<0.05) in unstimulated saliva (Le. drool and SOS), when compared with mechanically stimulated methods (p<0.05) (Salivette (R) Cotton and Synthetic) and acid stimulated method (p<0.05) (SCS (R)). Saliva collected using SOS yielded significantly (p<0.05) lower concentrations of myoglobin and CRP, whilst, saliva collected using the Salivette (R) Cotton and Synthetic swab yielded significantly (p<0.05) lower myoglobin and IgE concentrations respectively. Conclusions: The results demonstrated significantly relevant differences in analyte levels based on the collection method. Significant differences in the salivary flow rates were also observed depending on the saliva collection method. The data provide preliminary baseline values for salivary CRP, myoglobin, and IgE levels in healthy participants and based on the collection method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Saliva as a biological fluid is gaining wider acceptance for diagnosing diseases. The growing interest in saliva as a biological fluid is due to its noninvasiveness, ease of use, cost-effectiveness, and multiple sample collection possibilities as well as minimal risk to health care professionals of contracting infectious organisms such as HIV and Hep B. However, the clinical translation of saliva is hampered by our lack of understanding of the biomolecular transportation from blood into saliva, the diurnal variations of biomolecules present in saliva, and relatively low levels of analytes (100th to a 1000th fold less than in blood). We provide information on the current status of salivary research, salivary diagnostics empowered by nanotechnology, and future prospects in this emerging field of saliva diagnostics.
Resumo:
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.
Resumo:
Background: Plasma D-dimer tests are currently used to exclude deep vein thrombosis and pulmonary embolism. Human saliva has numerous advantages over blood as a diagnostic sample. The aims of our study were to develop a reliable immunoassay to detect D-dimer levels in saliva, and to determine the correlation between salivary and blood D-dimer levels. Results/methodology: Saliva and blood samples were collected from 40 healthy volunteers. We developed a AlphaLISA((R)) immunoassay with acceptable analytical performances to quantify D-dimer levels in the samples. The median salivary D-dimer levels were 138.1 ng/ml (morning) and 140.7 ng/ml (afternoon), and the plasma levels were 75.0 ng/ml. Salivary D-dimer levels did not correlate with plasma levels (p = 0.61). Conclusion: For the first time, we have quantified D-dimer levels and found twofold increase in saliva (p < 0.05) than in plasma. Further studies are required to demonstrate the clinical relevance/utility of salivary D-dimer in patients with confirmed deep vein thrombosis and/or pulmonary embolism.
Resumo:
Ultrafine particles are particles that are less than 0.1 micrometres (µm) in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH) study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT) and multiple breath nitrogen washout test (MBNW) (to assess airway function), fraction of exhaled nitric oxide (FeNO, to assess airway inflammation), blood cotinine levels (to assess exposure to second-hand tobacco smoke), and serum C-reactive protein (CRP) levels (to measure systemic inflammation). A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.
Resumo:
Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10−8) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease.