258 resultados para Business intelligence, data warehouse, sql server
Resumo:
The digital modelling research stream of the Sydney Opera House FM Exemplar Project has demonstrated significant benefits in digitising design documentation and operational and maintenance manuals. Since Sydney Opera House did not have digital models of its structure, there was an opportunity to investigate the application of digital modelling using standardised Building Information Models (BIM) to support facilities management (FM).The focus of this investigation was on the following areas:the re-usability of standardised BIM for FM purposesthe potential of BIM as an information framework acting as integrator for various FM data sources the extendibility and flexibility of the BIM to cope with business-specific data and requirements commercial FM software using standardised BIMthe ability to add (organisation-specific) intelligence to the modela roadmap for Sydney Opera House to adopt BIM for FM.
Resumo:
The management of main material prices of provincial highway project quota has problems of lag and blindness. Framework of provincial highway project quota data MIS and main material price data warehouse were established based on WEB firstly. Then concrete processes of provincial highway project main material prices were brought forward based on BP neural network algorithmic. After that standard BP algorithmic, additional momentum modify BP network algorithmic, self-adaptive study speed improved BP network algorithmic were compared in predicting highway project main prices. The result indicated that it is feasible to predict highway main material prices using BP NN, and using self-adaptive study speed improved BP network algorithmic is the relatively best one.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.
Resumo:
The Internet presents a constantly evolving frontier for criminology and policing, especially in relation to online predators – paedophiles operating within the Internet for safer access to children, child pornography and networking opportunities with other online predators. The goals of this qualitative study are to undertake behavioural research – identify personality types and archetypes of online predators and compare and contrast them with behavioural profiles and other psychological research on offline paedophiles and sex offenders. It is also an endeavour to gather intelligence on the technological utilisation of online predators and conduct observational research on the social structures of online predator communities. These goals were achieved through the covert monitoring and logging of public activity within four Internet Relay Chat(rooms) (IRC) themed around child sexual abuse and which were located on the Undernet network. Five days of monitoring was conducted on these four chatrooms between Wednesday 1 to Sunday 5 April 2009; this raw data was collated and analysed. The analysis identified four personality types – the gentleman predator, the sadist, the businessman and the pretender – and eight archetypes consisting of the groomers, dealers, negotiators, roleplayers, networkers, chat requestors, posters and travellers. The characteristics and traits of these personality types and archetypes, which were extracted from the literature dealing with offline paedophiles and sex offenders, are detailed and contrasted against the online sexual predators identified within the chatrooms, revealing many similarities and interesting differences particularly with the businessman and pretender personality types. These personality types and archetypes were illustrated by selecting users who displayed the appropriate characteristics and tracking them through the four chatrooms, revealing intelligence data on the use of proxies servers – especially via the Tor software – and other security strategies such as Undernet’s host masking service. Name and age changes, which is used as a potential sexual grooming tactic was also revealed through the use of Analyst’s Notebook software and information on ISP information revealed the likelihood that many online predators were not using any safety mechanism and relying on the anonymity of the Internet. The activities of these online predators were analysed, especially in regards to child sexual grooming and the ‘posting’ of child pornography, which revealed a few of the methods in which online predators utilised new Internet technologies to sexually groom and abuse children – using technologies such as instant messengers, webcams and microphones – as well as store and disseminate illegal materials on image sharing websites and peer-to-peer software such as Gigatribe. Analysis of the social structures of the chatrooms was also carried out and the community functions and characteristics of each chatroom explored. The findings of this research have indicated several opportunities for further research. As a result of this research, recommendations are given on policy, prevention and response strategies with regards to online predators.
Resumo:
In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.
Resumo:
Enterprise Systems (ES) have emerged as possibly the most important and challenging development in the corporate use of information technology in the last decade. Organizations have invested heavily in these large, integrated application software suites expecting improvments in; business processes, management of expenditure, customer service, and more generally, competitiveness, improved access to better information/knowledge (i.e., business intelligence and analytics). Forrester survey data consistently shows that investment in ES and enterprise applications in general remains the top IT spending priority, with the ES market estimated at $38 billion and predicted to grow at a steady rate of 6.9%, reaching $50 billion by 2012 (Wang & Hamerman, 2008). Yet, organizations have failed to realize all the anticipated benefits. One of the key reasons is the inability of employees to properly utilize the capabilities of the enterprise systems to complete the work and extract information critical to decision making. In response, universities (tertiary institutes) have developed academic programs aimed at addressing the skill gaps. In parallel with the proliferation of ES, there has been growing recognition of the importance of Teaching Enterprise Systems at tertiary education institutes. Many academic papers have discused the important role of Enterprise System curricula at tertiary education institutes (Ask, 2008; Hawking, 2004; Stewart, 2001), where the teaching philosophises, teaching approaches and challenges in Enterprise Systems education were discussed. Following the global trends, tertiary institutes in the Pacific-Asian region commenced introducing Enterprise System curricula in late 1990s with a range of subjects (a subject represents a single unit, rather than a collection of units; which we refer to as a course) in faculties / schools / departments of Information Technology, Business and in some cases in Engineering. Many tertiary educations commenced their initial subject offers around four salient concepts of Enterprise Systems: (1) Enterprise Systems implementations, (2) Introductions to core modules of Enterprise Systems, (3) Application customization using a programming language (e.g. ABAP) and (4) Systems Administration. While universities have come a long way in developing curricula in the enterprise system area, many obstacles remain: high cost of technology, qualified faculty to teach, lack of teaching materials, etc.
Resumo:
Supply chain management and customer relationship management are concepts for optimizing the provision of goods to customers. Information sharing and information estimation are key tools used to implement these two concepts. The reduction of delivery times and stock levels can be seen as the main managerial objectives of an integrative supply chain and customer relationship management. To achieve this objective, business processes need to be integrated along the entire supply chain including the end consumer. Information systems form the backbone of any business process integration. The relevant information system architectures are generally well-understood, but the conceptual specification of information systems for business process integration from a management perspective, remains an open methodological problem. To address this problem, we will show how customer relationship management and supply chain management information can be integrated at the conceptual level in order to provide supply chain managers with relevant information. We will further outline how the conceptual management perspective of business process integration can be supported by deriving specifications for enabling information system from business objectives.
Resumo:
The health system is one sector dealing with very large amount of complex data. Many healthcare organisations struggle to utilise these volumes of health data effectively and efficiently. Therefore, there is a need for very effective system to capture, collate and distribute this health data. There are number of technologies have been identified to integrate data from different sources. Data warehousing is one technology can be used to manage clinical data in the healthcare. This paper addresses how data warehousing assist to improve cardiac surgery decision making. This research used the cardiac surgery unit at the Prince Charles Hospital (TPCH) as the case study. In order to deal with other units efficiently, it is important to integrate disparate data to a single point interrogation. We propose implementing a data warehouse for the cardiac surgery unit at TPCH. The data warehouse prototype developed using SAS enterprise data integration studio 4.2 and data was analysed using SAS enterprise edition 4.3. This improves access to integrated clinical and financial data with, improved framing of data to the clinical context, giving potentially better informed decision making for both improved management and patient care.
Resumo:
Electricity cost has become a major expense for running data centers and server consolidation using virtualization technology has been used as an important technology to improve the energy efficiency of data centers. In this research, a genetic algorithm and a simulation-annealing algorithm are proposed for the static virtual machine placement problem that considers the energy consumption in both the servers and the communication network, and a trading algorithm is proposed for dynamic virtual machine placement. Experimental results have shown that the proposed methods are more energy efficient than existing solutions.
Resumo:
Large communities built around social media on the Internet offer an opportunity to augment analytical customer relationship management (CRM) strategies. The purpose of this paper is to provide direction to advance the conceptual design of business intelligence (BI) systems for implementing CRM strategies. After introducing social CRM and social BI as emerging fields of research, the authors match CRM strategies with a re-engineered conceptual data model of Facebook in order to illustrate the strategic value of these data. Subsequently, the authors design a multi-dimensional data model for social BI and demonstrate its applicability by designing management reports in a retail scenario. Building on the service blueprinting framework, the authors propose a structured research agenda for the emerging field of social BI.
Resumo:
Online business or Electronic Commerce (EC) is getting popular among customers today, as a result large number of product reviews have been posted online by the customers. This information is very valuable not only for prospective customers to make decision on buying product but also for companies to gather information of customers’ satisfaction about their products. Opinion mining is used to capture customer reviews and separated this review into subjective expressions (sentiment word) and objective expressions (no sentiment word). This paper proposes a novel, multi-dimensional model for opinion mining, which integrates customers’ characteristics and their opinion about any products. The model captures subjective expression from product reviews and transfers to fact table before representing in multi-dimensions named as customers, products, time and location. Data warehouse techniques such as OLAP and Data Cubes were used to analyze opinionated sentences. A comprehensive way to calculate customers’ orientation on products’ features and attributes are presented in this paper.
Resumo:
Talk of Big Data seems to be everywhere. Indeed, the apparently value-free concept of ‘data’ has seen a spectacular broadening of popular interest, shifting from the dry terminology of labcoat-wearing scientists to the buzzword du jour of marketers. In the business world, data is increasingly framed as an economic asset of critical importance, a commodity on a par with scarce natural resources (Backaitis, 2012; Rotella, 2012). It is social media that has most visibly brought the Big Data moment to media and communication studies, and beyond it, to the social sciences and humanities. Social media data is one of the most important areas of the rapidly growing data market (Manovich, 2012; Steele, 2011). Massive valuations are attached to companies that directly collect and profit from social media data, such as Facebook and Twitter, as well as to resellers and analytics companies like Gnip and DataSift. The expectation attached to the business models of these companies is that their privileged access to data and the resulting valuable insights into the minds of consumers and voters will make them irreplaceable in the future. Analysts and consultants argue that advanced statistical techniques will allow the detection of ongoing communicative events (natural disasters, political uprisings) and the reliable prediction of future ones (electoral choices, consumption)...
Resumo:
From 2014, QUT will be adopting a life-cycle approach to Course Quality Assurance informed by a wider and richer range of historic, ‘live’ and ‘predictive’ course data. Key data elements continue to be grouped according to the three broad categories – Viability, Quality of Learning Environment and Outcomes – and are further supported with analytic data presented within tables and charts. Course Quality Assurance and this Consolidated Courses Performance Report illuminate aspects of courses from a data evidence base highlighting the strengths and weaknesses of our courses. It provides the framework and tools to achieve QUT's commitment to excellent graduate outcomes by drawing attention and focus to the quality of our courses and providing a structured approach for bringing about change. Our portfolio of courses forms a vital part of QUT, generating almost $600 million in 2013 alone. Real world courses are fundamental to the strength of the Institution; they are what our many thousands of current and future students are drawn to and invest their time and aspirations in. As we move through a period of some regulatory and deregulatory uncertainty, there is a greater need for QUT to monitor and respond to the needs and expectations of our students. The life-cycle approach, with its rich and predicative data, provides the best source of evidence we have had, to date, to assure the quality of our courses and their relevance in a rapidly changing higher education context.
Resumo:
Honig and Samuelsson (2014) and Delmar (2015) recently had an exchange in this journal related to a replication-and-extension attempt of two papers which originally arrived at different conclusions based on the same data set. This commentary provides further clarification on the issues and links the debate to broader issues scholarly culture and practices in entrepreneurship research.