33 resultados para Barium orthosilicate
Resumo:
Layers (about 60-100 μm thick) of almost pure BaCuO2 (BC1), as determined using X-ray diffractometry (XRD) and scanning electron microscopy (SEM), coat the surfaces of YBa2Cu3O7-x (Y123) samples partial melt processed using a single-zone vertical furnace. The actual Cu/Ba ratio of the BC1 phase is 1.2-1.3 as determined using energy dispersive X-ray spectrometry (EDS). The nominally BC1 phase displays an exsolution of BC1.5 or BC2 in the form of thin plates (about 50-100 nm thick) along {100}-type cleavage planes or facets. The exsolved phase also fills cracks within the BC1 layer that require it to be in a molten state at some stage of processing. The samples were influenced by Pt contamination from the supporting wire, which may have stabilised the BC1.5 phase. Many of the Y123 grains have the same morphology as the exsolution domains, and run nearly parallel to the thin plates of the exsolved phases, strongly indicating that Y123 nucleation took place at the interface between the BC1 and the BC1.5 or BC2 exsolved phases. The network of nearly parallel exsolved 'channels' provides a matrix and a mechanism through which a high degree of local texture can be initiated in the material.
Resumo:
YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.
Resumo:
An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy.
Resumo:
Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.
Resumo:
The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.
Resumo:
The microstructures of the grain boundaries in epitaxial YBa2Cu3O7-δ thin films grown on [001]-tilt yttria-stabilized ZrO2 bicrystal substrates were characterized by TEM and at. force microscopy. The exact boundary plane geometries of the bicrystal substrates were not transferred to the films which instead had wiggling grain boundaries. [on SciFinder(R)]
Resumo:
Engineered grain boundary Josephson junctions in YBaCuO were formed on bicrystal Y-ZrO2 substrates. Laser deposited films were patterned into micron size microbridges. The authors obsd. a pronounced correlation between superconducting transport properties of grain boundary junctions and the misorientation angle θ between the two halves of the bicrystal. The crit. Josephson current Ic decreased about four orders of magnitude as θ was increased from 0 to 45 degrees. Clear microwave and magnetic field responses were obsd. at 77 K. At this temp., crit. current times normal resistance products, IcRn, of up to 1 mV were measured for low angle grain boundaries, and Shapiro steps were obsd. up to that voltage. DC SQUIDs were fabricated, and best performance at 77 K was obtained for θ = 32° with a 4-μm strip width. To utilize the higher IcRn value of a lower θ, submicron junctions have to be developed. [on SciFinder(R)]
Resumo:
Background Oropharyngeal aspiration (OPA) can lead to recurrent respiratory illnesses and chronic lung disease in children. Current clinical feeding evaluations performed by speech pathologists have poor reliability in detecting OPA when compared to radiological procedures such as the modified barium swallow (MBS). Improved ability to diagnose OPA accurately via clinical evaluation potentially reduces reliance on expensive, less readily available radiological procedures. Our study investigates the utility of adding cervical auscultation (CA), a technique of listening to swallowing sounds, in improving the diagnostic accuracy of a clinical evaluation for the detection of OPA. Methods We plan an open, unblinded, randomised controlled trial at a paediatric tertiary teaching hospital. Two hundred and sixteen children fulfilling the inclusion criteria will be randomised to one of the two clinical assessment techniques for the clinical detection of OPA: (1) clinical feeding evaluation only (CFE) group or (2) clinical feeding evaluation with cervical auscultation (CFE + CA) group. All children will then undergo an MBS to determine radiologically assessed OPA. The primary outcome is the presence or absence of OPA, as determined on MBS using the Penetration-Aspiration Scale. Our main objective is to determine the sensitivity, specificity, negative and positive predictive values of ‘CFE + CA’ versus ‘CFE’ only compared to MBS-identified OPA. Discussion Early detection and appropriate management of OPA is important to prevent chronic pulmonary disease and poor growth in children. As the reliability of CFE to detect OPA is low, a technique that can improve the diagnostic accuracy of the CFE will help minimise consequences to the paediatric respiratory system. Cervical auscultation is a technique that has previously been documented as a clinical adjunct to the CFE; however, no published RCTs addressing the reliability of this technique in children exist. Our study will be the first to establish the utility of CA in assessing and diagnosing OPA risk in young children.
Resumo:
Reverse osmosis (RO) is used by coal seam gas (CSG) operators to treat produced water as it is a well-established and proven technology worldwide. Despite the suitability of RO, there are problems associated with RO technology such as membrane fouling which although not preventing use of RO does decrease effectiveness and increase operating costs. Hence, effective pre-treatment of water samples is essential. Electrocoagulation (EC) potentially can provide improved water purification compared to conventional coagulation prior to an RO unit. This paper provides the first reported study of EC for CSG water pre-treatment and compares the performance to a range of aluminium and iron based coagulants. It was found that EC was superior in terms of removal of silica, calcium, magnesium, barium and strontium in the produced water.
Resumo:
The mineral harmotome (Ba,Na,K)1-2(Si,Al)8O16⋅6H2O is a crystalline sodium calcium silicate which has the potential to be used in plaster boards and other industrial applications. It is a natural zeolite with catalytic potential. Raman bands at 1020 and 1102 cm−1 are assigned to the SiO stretching vibrations of three dimensional siloxane units. Raman bands at 428, 470 and 491 cm−1 are assigned to OSiO bending modes. The broad Raman bands at around 699, 728, 768 cm−1 are attributed to water librational modes. Intense Raman bands in the 3100 to 3800 cm−1 spectral range are assigned to OH stretching vibrations of water in harmotome. Infrared spectra are in harmony with the Raman spectra. A sharp infrared band at 3731 cm−1 is assigned to the OH stretching vibration of SiOH units. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral harmotome.
Resumo:
Background The population exposed to potentially hazardous substances through inappropriate and unsafe management practices related to disposal and recycling of end-of-life electrical and electronic equipment, collectively known as e-waste, is increasing. We aimed to summarise the evidence for the association between such exposures and adverse health outcomes. Methods We systematically searched five electronic databases (PubMed, Embase, Web of Science, PsycNET, and CINAHL) for studies assessing the association between exposure to e-waste and outcomes related to mental health and neurodevelopment, physical health, education, and violence and criminal behaviour, from Jan 1, 1965, to Dec 17, 2012, and yielded 2274 records. Of the 165 full-text articles assessed for eligibility, we excluded a further 142, resulting in the inclusion of 23 published epidemiological studies that met the predetermined criteria. All studies were from southeast China. We assessed evidence of a causal association between exposure to e-waste and health outcomes within the Bradford Hill framework. Findings We recorded plausible outcomes associated with exposure to e-waste including change in thyroid function, changes in cellular expression and function, adverse neonatal outcomes, changes in temperament and behaviour, and decreased lung function. Boys aged 8–9 years living in an e-waste recycling town had a lower forced vital capacity than did those living in a control town. Significant negative correlations between blood chromium concentrations and forced vital capacity in children aged 11 and 13 years were also reported. Findings from most studies showed increases in spontaneous abortions, stillbirths, and premature births, and reduced birthweights and birth lengths associated with exposure to e-waste. People living in e-waste recycling towns or working in e-waste recycling had evidence of greater DNA damage than did those living in control towns. Studies of the effects of exposure to e-waste on thyroid function were not consistent. One study related exposure to e-waste and waste electrical and electronic equipment to educational outcomes. Interpretation Although data suggest that exposure to e-waste is harmful to health, more well designed epidemiological investigations in vulnerable populations, especially pregnant women and children, are needed to confirm these associations. Funding Children's Health and Environment Program, Queensland Children's Medical Research Institute, The University of Queensland, Australia.
Resumo:
The mineral lamprophyllite is fundamentally a silicate based upon tetrahedral siloxane units with extensive substitution in the formula. Lamprophyllite is a complex group of sorosilicates with general chemical formula given as A2B4C2Si2O7(X)4, where the site A can be occupied by strontium, barium, sodium, and potassium; the B site is occupied by sodium, titanium, iron, manganese, magnesium, and calcium. The site C is mainly occupied by titanium or ferric iron and X includes the anions fluoride, hydroxyl, and oxide. Chemical composition shows a homogeneous phase, composed of Si, Na, Ti, and Fe. This complexity of formula is reflected in the complexity of both the Raman and infrared spectra. The Raman spectrum is characterized by intense bands at 918 and 940 cm−1. Other intense Raman bands are found at 576, 671, and 707 cm−1. These bands are assigned to the stretching and bending modes of the tetrahedral siloxane units.
Resumo:
This work explored the applicability of electrocoagulation (EC) using aluminium electrodes for the removal of contaminants which can scale and foul reverse osmosis membranes from a coal seam (CS) water sample, predominantly comprising sodium chloride, and sodium bicarbonate. In general, the removal efficiency of species responsible for scaling and fouling was enhanced by increasing the applied current density/voltage and contact times (30–60 s) in the EC chamber. High removal efficiencies of species potentially responsible for scale formation in reverse osmosis units such as calcium (100%), magnesium (87.9%), strontium (99.3%), barium (100%) and silicates (98.3%) were achieved. Boron was more difficult to eliminate (13.3%) and this was postulated to be due to the elevated solution pH. Similarly, fluoride removal from solution (44%) was also inhibited by the presence of hydroxide ions in the pH range 9–10. Analysis of produced flocs suggested the dominant presence of relatively amorphous boehmite (AlOOH), albeit the formation of Al(OH)3 was not ruled out as the drying process employed may have converted aluminium hydroxide to aluminium oxyhydroxide species. Evidence for adsorption of contaminants on floc surface sites was determined from FTIR studies. The quantity of aluminium released during the electrocoagulation process was higher than the Faradaic amount which suggested that the high salt concentrations in the coal seam water had chemically reacted with the aluminium electrodes.
Resumo:
We report electron microscopic evidence of transmission from a pet dog to a 12-year-girl of Gastrospirillum hominis which caused gastric disease in both that was eradicable with treatment. © 1994.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.