64 resultados para BIPOLAR LOCALIZATION
Resumo:
Probabilistic robotics, most often applied to the problem of simultaneous localisation and mapping (SLAM), requires measures of uncertainly to accompany observations of the environment. This paper describes how uncertainly can be characterised for a vision system that locates coloured landmark in a typical laboratory environment. The paper describes a model of the uncertainly in segmentation, the internal camera model and the mounting of the camera on the robot. It =plains the implementation of the system on a laboratory robot, and provides experimental results that show the coherence of the uncertainly model,
Resumo:
Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.
Resumo:
This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.
Resumo:
In this paper, we propose a search-based approach to join two tables in the absence of clean join attributes. Non-structured documents from the web are used to express the correlations between a given query and a reference list. To implement this approach, a major challenge we meet is how to efficiently determine the number of times and the locations of each clean reference from the reference list that is approximately mentioned in the retrieved documents. We formalize the Approximate Membership Localization (AML) problem and propose an efficient partial pruning algorithm to solve it. A study using real-word data sets demonstrates the effectiveness of our search-based approach, and the efficiency of our AML algorithm.
Resumo:
The strain-induced self-assembly of suitable semiconductor pairs is an attractive natural route to nanofabrication. To bring to fruition their full potential for actual applications, individual nanostructures need to be combined into ordered patterns in which the location of each single unit is coupled with others and the surrounding environment. Within the Ge/Si model system, we analyze a number of examples of bottom-up strategies in which the shape, positioning, and actual growth mode of epitaxial nanostructures are tailored by manipulating the intrinsic physical processes of heteroepitaxy. The possibility of controlling elastic interactions and, hence, the configuration of self-assembled quantum dots by modulating surface orientation with the miscut angle is discussed. We focus on the use of atomic steps and step bunching as natural templates for nanodot clustering. Then, we consider several different patterning techniques which allow one to harness the natural self-organization dynamics of the system, such as: scanning tunneling nanolithography, focused ion beam and nanoindentation patterning. By analyzing the evolution of the dot assembly by scanning probe microscopy, we follow the pathway which leads to lateral ordering, discussing the thermodynamic and kinetic effects involved in selective nucleation on patterned substrates.
Resumo:
This PhD represents my attempt to make sense of my personal experiences of depression through the form of cabaret. I first experienced depression in 2006. Previously, I had considered myself to be a happy and optimistic person. I found the experience of depression to be a shock: both in the experience itself, and also in the way it effected my own self image. These personal experiences, together with my professional history as a songwriter and cabaret performer, have been the motivating force behind the research project. This study has explored the question: What are the implications of applying principles of Michael White’s narrative therapy to the creation of a cabaret performance about depression and bipolar disorder? There is a 50 percent weighting on the creative work, the cabaret performance Mind Games, and a 50 percent weighting on the written exegesis. This research has focussed on the illustration of therapeutic principles in order to play games of truth within a cabaret performance. The research project investigates ways of telling my own story in relation to others’ stories through three re-authoring principles articulated in Michael White’s narrative therapy: externalisation, an autonomous ethic of living and rich descriptions. The personal stories presented in the cabaret were drawn from my own experiences and from interviews with individuals with depression or bipolar disorder. The cabaret focussed on the illustration of therapeutic principles, and was not focussed on therapeutic ends for myself or the interviewees. The research question has been approached through a methodology combining autoethnographic, practice-led and action research. Auto ethnographic research is characterised by close investigation of assumptions, attitudes, and beliefs. The combination of autoethnographic, practice-led, action research has allowed me to bring together personal experiences of mental illness, research into therapeutic techniques, social attitudes and public discourses about mental illness and forms of contemporary cabaret to facilitate the creation of a one-woman cabaret performance. The exegesis begins with a discussion of games of truth as informed by Michel Foucault and Michael White and self-stigma as informed by Michael White and Erving Goffman. These concepts form the basis for a discussion of my own personal experiences. White’s narrative therapy is focused on individuals re-authoring their stories, or telling their stories in different ways. White’s principles are influenced by Foucault’s notions of truth and power. Foucault’s term games of truth has been used to describe the effect of a ‘truth in flux’ that occurs through White’s re-authoring process. This study argues that cabaret is an appropriate form to represent this therapeutic process because it favours heightened performativity over realism, and showcases its ‘constructedness’ and artificiality. Thus cabaret is well suited to playing games of truth. A contextual review compares two major cabaret trends, personal cabaret and provocative cabaret, in reference to the performer’s relationship with the audience in terms of distance and intimacy. The study draws a parallel between principles of distance and intimacy in Michael White’s narrative therapy and relates these to performative terms of distance and intimacy. The creative component of this study, the cabaret Mind Games, used principles of narrative therapy to present the character ‘Jo’ playing games of truth through: externalising an aspect of her personality (externalisation); exploring different life values (an autonomous ethic of living); and enacting multiple versions of her identity (rich descriptions). This constant shifting between distance and intimacy within the cabaret created the effect of a truth in ‘constant flux’, to use one of White’s terms. There are three inter-related findings in the study. The first finding is that the application of principles of White’s narrative therapy was able to successfully combine provocative and empathetic elements within the cabaret. The second finding is that the personal agenda of addressing my own self-stigma within the project limited the effective portrayal of a ‘truth in flux’ within the cabaret. The third finding presents the view that the cabaret expressed ‘Jo’ playing games of truth in order to journey towards her own "preferred identity claim" (White 2004b) through an act of "self care" (Foucault 2005). The contribution to knowledge of this research project is the application of therapeutic principles to the creation of a cabaret performance. This process has focussed on creating a self-revelatory cabaret that questions notions of a ‘fixed truth’ through combining elements of existing cabaret forms in new ways. Two major forms in contemporary cabaret, the personal cabaret and the provocative cabaret use the performer-audience relationship in distinctive ways. Through combining elements of these two cabaret forms, I have explored ways to create a provocative cabaret focussed on the act of self-revelation.
Resumo:
Proteasomes can exist in several different molecular forms in mammalian cells. The core 20S proteasome, containing the proteolytic sites, binds regulatory complexes at the ends of its cylindrical structure. Together with two 19S ATPase regulatory complexes it forms the 26S proteasome, which is involved in ubiquitin-dependent proteolysis. The 20S proteasome can also bind 11S regulatory complexes (REG, PA28) which play a role in antigen processing, as do the three variable c-interferoninducible catalytic b-subunits (e.g. LMP7). In the present study, we have investigated the subcellular distribution of the different forms of proteasomes using subunit speci®c antibodies. Both 20S proteasomes and their 19S regulatory complexes are found in nuclear, cytosolic and microsomal preparations isolated from rat liver. LMP7 was enriched approximately two-fold compared with core a-type proteasome subunits in the microsomal preparations. 20S proteasomes were more abundant than 26S proteasomes, both in liver and cultured cell lines. Interestingly, some signi®cant differences were observed in the distribution of different subunits of the 19S regulatory complexes. S12, and to a lesser extent p45, were found to be relatively enriched in nuclear fractions from rat liver, and immuno¯uorescent labelling of cultured cells with anti-p45 antibodies showed stronger labelling in the nucleus than in the cytoplasm. The REG was found to be localized predominantly in the cytoplasm. Three- to six-fold increases in the level of REG were observed following cinterferon treatment of cultured cells but c-interferon had no obvious effect on its subcellular distribution. These results demonstrate that different regulatory complexes and subpopulations of proteasomes have different distributions within mammalian cells and, therefore, that the distribution is more complex than has been reported for yeast proteasomes.
Resumo:
Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.
Resumo:
Appearance-based localization can provide loop closure detection at vast scales regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale not only with the size of the environment but also with the operation time of the platform. Additionally, repeated visits to locations will develop multiple competing representations, which will reduce recall performance over time. These properties impose severe restrictions on long-term autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. In this paper we present a graphical extension to CAT-SLAM, a particle filter-based algorithm for appearance-based localization and mapping, to provide constant computation and memory requirements over time and minimal degradation of recall performance during repeated visits to locations. We demonstrate loop closure detection in a large urban environment with capped computation time and memory requirements and performance exceeding previous appearance-based methods by a factor of 2. We discuss the limitations of the algorithm with respect to environment size, appearance change over time and applications in topological planning and navigation for long-term robot operation.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.