748 resultados para Autonomy, School
Resumo:
This study examines teachers’ conceptions of essential knowledge in the humanities and social sciences, commonly referred to as "social education", in the middle years of schooling. Social education has long been a highly contested area of the curriculum in Australia. In Queensland, social education comprises the integrated learning area of Studies of Society and Environment (SOSE). However, the new Australian Curriculum marks a return to discipline-based study of history and geography. This phenomenographic study addresses a perceived lack of understanding in the current research literature in Australia of the nature of middle school teachers’ professional knowledge for teaching the social sciences. Teachers are conceptualised in this study as curriculum makers in the classroom and, as such, their conceptions of essential knowledge are significant. Shulman’s (1986, 1987) theory of teachers’ knowledge forms the theoretical foundation of the study, which is contextualised in Federal and State education policies and the literature on the middle phase of schooling. Transcripts of interviews conducted with a group of thirty-one Queensland middle school teachers of SOSE were subjected to phenomenographic analysis, revealing seven qualitatively different categories of description. Essential aspects of knowledge for social education emerging from the study were: (1) discipline-based knowledge; (2) curriculum knowledge; (3) knowledge derived from teaching experience; (4) knowledge of middle years learners; (5) knowledge of integration; (6) knowledge of current affairs; and (7) knowledge invested in teacher identity. The three dimensions of variation that linked and differentiated the categories were: (1) content; (2) inquiry learning; and (3) teacher autonomy. These findings are presented as an outcome space where the categories are grouped as knowledge of the learning area, knowledge of contexts and knowledge of self as teacher. The results of the study suggest that social education teachers’ identity and knowledge of self are critical aspects of their knowledge as curriculum makers. The results illustrate that the professional and personal domains intersect, extending Shulman’s (1986, 1987) original theorisation of teachers’ knowledge into the personal arena. Further, middle years teachers’ conceptions of essential knowledge reveal a practice-based theorisation of knowledge for social education that fits the goals of middle schooling. The research concludes that attention to teacher identity in teacher education and in-service professional development has considerable potential to grow teachers’ knowledge in the social sciences and enhance their capacity for school-based curriculum leadership.
Resumo:
This article proposes offence-specific guidelines for how prosecutorial discretion should be exercised in cases of voluntary euthanasia and assisted suicide. Similar guidelines have been produced in England and Wales but we consider them to be deficient in a number of respects, including that they lack a set of coherent guiding principles. In light of these concerns, we outline an approach to constructing alternative guidelines that begins with identifying three guiding principles that we argue are appropriate for this purpose: respect for autonomy, the need for high quality prosecutorial decision-making and the importance of public confidence in that decision-making.
Resumo:
This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.
Resumo:
An increased interest in utilising groups of Unmanned Aerial Vehicles (UAVs) with heterogeneous capabilities and autonomy is presenting the challenge to effectively manage such during missions and operations. This has been the focus of research in recent years, moving from a traditional UAV management paradigm of n-to-1 (n operators for one UAV, with n being at least two operators) toward 1-to-n (one operator, multiple UAVs). This paper has expanded on the authors’ previous work on UAV functional capability framework, by incorporating the concept of Functional Level of Autonomy (F-LOA) with two configurations: The lower F-LOA configuration contains sufficient information for the operator to generate solutions and make decisions to address perturbation events. Alternatively, the higher F-LOA configuration presents information reflecting on the F-LOA of the UAV, allowing the operator to interpret solutions and decisions generated autonomously, and decide whether to veto from this decision.
Resumo:
The construction of menopause as a long-term risk to health and the adoption of discourses of prevention has made necessary a decision by women about medical treatment; specifically regarding the use of hormone replacement therapy. In a study of general practitioners’ accounts of menopause and treatment in Australia, women's ‘choice’, ‘informed decision-making’ and ‘empowerment’ were key themes through which primary medical care for women at menopause was presented. These accounts create a position for women defined by the concept of individual choice and an ethic of autonomy. These data are a basis for theorising more generally in this paper. We critically examine the construct of ‘informed decision-making’ in relation to several approaches to ethics including bioethics and a range of feminist ethics. We identify the intensification of power relations produced by an ethic of autonomy and discuss the ways these considerations inform a feminist ethics of decision-making by women. We argue that an ‘ethic of autonomy’ and an ‘offer of choice’ in relation to health care for women at menopause, far from being emancipatory, serves to intensify power relations. The dichotomy of choice, to take or not to take hormone replacement therapy, is required to be a choice and is embedded in relations of power and bioethical discourse that construct meanings about what constitutes decision-making at menopause. The deployment of the principle of autonomy in medical practice limits decision-making by women precisely because it is detached from the construction of meaning and the self and makes invisible the relations of power of which it is a part.
Resumo:
Stereo-based visual odometry algorithms are heavily dependent on an accurate calibration of the rigidly fixed stereo pair. Even small shifts in the rigid transform between the cameras can impact on feature matching and 3D scene triangulation, adversely affecting pose estimates and applications dependent on long-term autonomy. In many field-based scenarios where vibration, knocks and pressure change affect a robotic vehicle, maintaining an accurate stereo calibration cannot be guaranteed over long periods. This paper presents a novel method of recalibrating overlapping stereo camera rigs from online visual data while simultaneously providing an up-to-date and up-to-scale pose estimate. The proposed technique implements a novel form of partitioned bundle adjustment that explicitly includes the homogeneous transform between a stereo camera pair to generate an optimal calibration. Pose estimates are computed in parallel to the calibration, providing online recalibration which seamlessly integrates into a stereo visual odometry framework. We present results demonstrating accurate performance of the algorithm on both simulated scenarios and real data gathered from a wide-baseline stereo pair on a ground vehicle traversing urban roads.
Resumo:
This paper discusses a model of the civil aviation reg- ulation framework and shows how the current assess- ment of reliability and risk for piloted aircraft has limited applicability for Unmanned Aircraft Systems (UAS) with high levels of autonomous decision mak- ing. Then, a new framework for risk management of robust autonomy is proposed, which arises from combining quantified measures of risk with normative decision making. The term Robust Autonomy de- scribes the ability of an autonomous system to either continue or abort its operation whilst not breaching a minimum level of acceptable safety in the presence of anomalous conditions. The decision making associ- ated with risk management requires quantifying prob- abilities associated with the measures of risk and also consequences of outcomes related to the behaviour of autonomy. The probabilities are computed from an assessment under both nominal and anomalous sce- narios described by faults, which can be associated with the aircraft’s actuators, sensors, communication link, changes in dynamics, and the presence of other aircraft in the operational space. The consequences of outcomes are characterised by a loss function which rewards the certification decision
Resumo:
As the number of potential applications of Unmanned Aircraft Systems (UAS) grows in civilian operations and national security, National Airworthiness Authorities are under increasing pressure to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the latter and describes the use of a framework for evaluating robust autonomy of UAS, namely, the autonomous system’s ability to either continue operation in the presence of faults or safely shut down. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It also discusses how the data from the proposed evaluation can be uses as an aid for decision making in certification and UAS designs.
Resumo:
As the level of autonomy in Unmanned Aircraft Systems (UAS) increases, there is an imperative need for developing methods to assess robust autonomy. This paper focuses on the computations that lead to a set of measures of robust autonomy. These measures are the probabilities that selected performance indices related to the mission requirements and airframe capabilities remain within regions of acceptable performance.
Resumo:
The interest in utilising multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in close proximity is growing rapidly. As such, many challenges are presented in the effective coordination and management of these UAVs; converting the current n-to-1 paradigm (n operators operating a single UAV) to the 1-to-n paradigm (one operator managing n UAVs). This paper introduces an Information Abstraction methodology used to produce the functional capability framework initially proposed by Chen et al. and its Level Of Detail (LOD) indexing scale. This framework was validated through comparing the operator workload and Situation Awareness (SA) of three experiment scenarios involving multiple autonomously heterogeneous UAVs. The first scenario was set in a high LOD configuration with highly abstracted UAV functional information; the second scenario was set in a mixed LOD configuration; and the final scenario was set in a low LOD configuration with maximal UAV functional information. Results show that there is a significant statistical decrease in operator workload when a UAV’s functional information is displayed at its physical form (low LOD - maximal information) when comparing to the mixed LOD configuration.
Resumo:
As the number of Uninhabited Airborne Systems (UAS) proliferates in civil applications, industry is increasingly putting pressure on regulation authorities to provide a path for certification and allow UAS integration into regulated airspace. The success of this integration depends on developments in improved UAS reliability and safety, regulations for certification, and technologies for operational performance and safety assessment. This paper focusses on the last topic and describes a framework for quantifying robust autonomy of UAS, which quantifies the system's ability to either continue operating in the presence of faults or safely shut down. Two figures of merit are used to evaluate vehicle performance relative to mission requirements and the consequences of autonomous decision making in motion control and guidance systems. These figures of merit are interpreted within a probabilistic framework, which extends previous work in the literature. The valuation of the figures of merit can be done using stochastic simulation scenarios during both vehicle development and certification stages with different degrees of integration of hardware-in-the-loop simulation technology. The objective of the proposed framework is to aid in decision making about the suitability of a vehicle with respect to safety and reliability relative to mission requirements.
Resumo:
This paper discusses a method to quantify robust autonomy of Uninhabited Vehicles and Systems (UVS) in aerospace, marine, or land applications. Based on mission-vehicle specific performance criteria, we define an system utility function that can be evaluated using simulation scenarios for an envelope of environmental conditions. The results of these evaluations are used to compute a figure of merit or measure for operational efectiveness (MOE). The procedure is then augmented to consider faults and the performance of mechanisms to handle these faulty operational modes. This leads to a measure of robust autonomy (MRA). The objective of the proposed figures of merit is to assist in decision making about vehicle performance and reliability at both vehicle development stage (using simulation models) and at certification stage (using hardware-in-the-loop testing). Performance indices based on dynamic and geometric tasks associated with vehicle manoeuvring problems are proposed, and an example of a two- dimensional y scenario is provided to illustrate the use of the proposed figures of merit.
Resumo:
Issues of autonomy impact motivation, the user experience and even psychological wellbeing, yet many questions surrounding design for autonomy remain unanswered. This workshop will explore theory, issues and design strategies related to autonomy drawing on theoretical frameworks available in psychology and looking at autonomy from multiple levels. These include user autonomy within the context of software environments, technologies that increase autonomy in daily life, and how technologies might foster autonomy as a component of psychological development.
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
The growing number of potential applications of Unmanned Aircraft Systems (UAS) in civilian operations and national security is putting pressure of National Airworthiness Authorities to provide a path for certification and allow UAS integration into the national airspace. The success of this integration depends not only on developments in improved UAS reliability and safety, but also on regulations for certification, and methodologies for operational performance and safety assessment. This paper focuses on the latter and describes progress in relation to a previously proposed framework for evaluating robust autonomy of UAS. The paper draws parallels between the proposed evaluation framework and the evaluation of pilots during the licensing process. It discusses how the data from the proposed evaluation can be used as an aid for decision making in certification and UAS designs. Finally, it discusses challenges associated with the evaluation.