283 resultados para test automation
Resumo:
The aim of this study was to asses results obtained from a range of commonly performed lower extremity “open and closed” chain kinetic tests used for predicting foot function and correlate these test findings to data obtained from the Zebris WinFDM-T system®. When performed correctly these tests are thought to be indicators of lower extremity function. Podiatrists frequently perform examinations of joint and muscle structures to understand biomechanical function; however the relationship between these routine tests and forces generated during the gait cycle are not always well understood. This can introduce a degree of variability in clinical interpretation which creates conjecture regarding the value of these tests.
Resumo:
Objective: To describe patient participation and clinical performance in a colorectal cancer (CRC) screening program utilising faecal occult blood test (FOBT). Methods: A community-based intervention was conducted in a small, rural community in north Queensland, 2000/01. One of two FOBT kits – guaiac (Hemoccult-ll) or immunochemical (Inform) – was assigned by general practice and mailed to participants (3,358 patients aged 50–74 years listed with the local practices). Results: Overall participation in FOBT screening was 36.3%. Participation was higher with the immunochemical kit than the guaiac kit (OR=1.9, 95% Cl 1.6-2.2). Women were more likely to comply with testing than men (OR=1.4, 95% Cl 1.2-1.7), and people in their 60s were less likely to participate than those 70–74 years (OR=0.8, 95% Cl 0.6-0.9). The positivity rate was higher for the immunochemical (9.5%) than the guaiac (3.9%) test (χ2=9.2, p=0.002), with positive predictive values for cancer or adenoma of advanced pathology of 37.8% (95% Cl 28.1–48.6) for !nform and 40.0% (95% Cl 16.8–68.7) for Hemoccult-ll. Colonoscopy follow-up was 94.8% with a medical complication rate of 2–3%. Conclusions: An immunochemical FOBT enhanced participation. Higher positivity rates for this kit did not translate into higher false-positive rates, and both test types resulted in a high yield of neoplasia. Implications: In addition to type of FOBT, the ultimate success of a population-based screening program for CRC using FOBT will depend on appropriate education of health professionals and the public as well as significant investment in medical infrastructure for colonoscopy follow-up.
Resumo:
We have derived a versatile gene-based test for genome-wide association studies (GWAS). Our approach, called VEGAS (versatile gene-based association study), is applicable to all GWAS designs, including family-based GWAS, meta-analyses of GWAS on the basis of summary data, and DNA-pooling-based GWAS, where existing approaches based on permutation are not possible, as well as singleton data, where they are. The test incorporates information from a full set of markers (or a defined subset) within a gene and accounts for linkage disequilibrium between markers by using simulations from the multivariate normal distribution. We show that for an association study using singletons, our approach produces results equivalent to those obtained via permutation in a fraction of the computation time. We demonstrate proof-of-principle by using the gene-based test to replicate several genes known to be associated on the basis of results from a family-based GWAS for height in 11,536 individuals and a DNA-pooling-based GWAS for melanoma in approximately 1300 cases and controls. Our method has the potential to identify novel associated genes; provide a basis for selecting SNPs for replication; and be directly used in network (pathway) approaches that require per-gene association test statistics. We have implemented the approach in both an easy-to-use web interface, which only requires the uploading of markers with their association p-values, and a separate downloadable application.
Resumo:
The impact of erroneous genotypes having passed standard quality control (QC) can be severe in genome-wide association studies, genotype imputation, and estimation of heritability and prediction of genetic risk based on single nucleotide polymorphisms (SNP). To detect such genotyping errors, a simple two-locus QC method, based on the difference in test statistic of association between single SNPs and pairs of SNPs, was developed and applied. The proposed approach could detect many problematic SNPs with statistical significance even when standard single SNP QC analyses fail to detect them in real data. Depending on the data set used, the number of erroneous SNPs that were not filtered out by standard single SNP QC but detected by the proposed approach varied from a few hundred to thousands. Using simulated data, it was shown that the proposed method was powerful and performed better than other tested existing methods. The power of the proposed approach to detect erroneous genotypes was approximately 80% for a 3% error rate per SNP. This novel QC approach is easy to implement and computationally efficient, and can lead to a better quality of genotypes for subsequent genotype-phenotype investigations.
Resumo:
This paper reports a rare investigation of stopover destination image. Although the topic of destination image has been one of the most popular in the tourism literature since the 1970s, there has been a lack of research attention in relation to the context of stopover destinations for long haul international travellers. The purpose of this study was to identify attributes deemed salient to Australian consumers when considering stopover destinations for long haul travel to the United Kingdom and Europe. Underpinned by Personal Construct Theory (PCT), the study used the Repertory Test to identify 21 salient attributes, which could be used in the development of a survey instrument to measure the attractiveness of a competitive set of stopover destinations. While the list of attributes shared some commonality with general studies of destination image reported in the literature, the elicitation of a relatively large number of stopover context specific attributes highlights the potential benefit of engaging with consumers in qualitative research, such as using the Repertory Test, during the questionnaire development stage.
Resumo:
Objective To develop the DCDDaily, an instrument for objective and standardized clinical assessment of capacity in activities of daily living (ADL) in children with developmental coordination disorder (DCD), and to investigate its usability, reliability, and validity. Subjects Five to eight-year-old children with and without DCD. Main measures The DCDDaily was developed based on thorough review of the literature and extensive expert involvement. To investigate the usability (assessment time and feasibility), reliability (internal consistency and repeatability), and validity (concurrent and discriminant validity) of the DCDDaily, children were assessed with the DCDDaily and the Movement Assessment Battery for Children-2 Test, and their parents filled in the Movement Assessment Battery for Children-2 Checklist and Developmental Coordination Disorder Questionnaire. Results 459 children were assessed (DCD group, n = 55; normative reference group, n = 404). Assessment was possible within 30 minutes and in any clinical setting. For internal consistency, Cronbach’s α = 0.83. Intraclass correlation = 0.87 for test–retest reliability and 0.89 for inter-rater reliability. Concurrent correlations with Movement Assessment Battery for Children-2 Test and questionnaires were ρ = −0.494, 0.239, and −0.284, p < 0.001. Discriminant validity measures showed significantly worse performance in the DCD group than in the control group (mean (SD) score 33 (5.6) versus 26 (4.3), p < 0.001). The area under curve characteristic = 0.872, sensitivity and specificity were 80%. Conclusions The DCDDaily is a valid and reliable instrument for clinical assessment of capacity in ADL, that is feasible for use in clinical practice.
Resumo:
Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
This work proposes a supermarket optimization simulation model called Swarm-Moves is based on self organized complex system studies to identify parameters and their values that can influence customers to buy more on impulse in a given period of time. In the proposed model, customers are assumed to have trolleys equipped with technology like RFID that can aid the passing of products' information directly from the store to them in real-time and vice-versa. Therefore, they can get the information about other customers purchase patterns and constantly informing the store of their own shopping behavior. This can be easily achieved because the trolleys "know" what products they contain at any point. The Swarm-Moves simulation is the virtual supermarket providing the visual display to run and test the proposed model. The simulation is also flexible to incorporate any given model of customers' behavior tailored to particular supermarket, settings, events or promotions. The results, although preliminary, are promising to use RFID technology for marketing products in supermarkets and provide several dimensions to look for influencing customers via feedback, real-time marketing, target advertisement and on-demand promotions. ©2009 IEEE.
Resumo:
Overview This report, published in conjunction with a summary overview of results of rounds 1–6, is the sixth in a series of laboratory-based evaluations of rapid diagnostic tests (RDTs) for malaria. It provides a comparative measure of their performance in a standardized way to distinguish between well and poorly performing tests. It can be used by malaria control programmes and guide WHO procurement recommendations for these diagnostic tools. The evaluation reported here was a joint project of the WHO Global Malaria Programme, the Foundation for Innovative New Diagnostics (FIND) and the United States Centers for Disease Control and Prevention (CDC) within the WHO-FIND Malaria RDT Evaluation Programme. The project was financed by FIND through a grant from UNITAID.
Resumo:
Detect and Avoid (DAA) technology is widely acknowledged as a critical enabler for unsegregated Remote Piloted Aircraft (RPA) operations, particularly Beyond Visual Line of Sight (BVLOS). Image-based DAA, in the visible spectrum, is a promising technological option for addressing the challenges DAA presents. Two impediments to progress for this approach are the scarcity of available video footage to train and test algorithms, in conjunction with testing regimes and specifications which facilitate repeatable, statistically valid, performance assessment. This paper includes three key contributions undertaken to address these impediments. In the first instance, we detail our progress towards the creation of a large hybrid collision and near-collision encounter database. Second, we explore the suitability of techniques employed by the biometric research community (Speaker Verification and Language Identification), for DAA performance optimisation and assessment. These techniques include Detection Error Trade-off (DET) curves, Equal Error Rates (EER), and the Detection Cost Function (DCF). Finally, the hybrid database and the speech-based techniques are combined and employed in the assessment of a contemporary, image based DAA system. This system includes stabilisation, morphological filtering and a Hidden Markov Model (HMM) temporal filter.
Resumo:
The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.
Resumo:
The test drive is a well-known step in car buying. In the emerging plug-in electric vehicle (PEV) market, however, the influence of a pre-purchase test drive on a consumer's inclination to purchase is unknown. Policy makers and industry participants both are eager to understand what factors motivate vehicle consumers at the point-of-sale. A number of researchers have used choice models to shed light on consumer perceptions of PEVs, and others have investigated consumer change in disposition toward a PEV over the course of a trial, wherein test driving a PEV may take place over a number of consecutive days, weeks or months. However, there is little written on the impact of a short-term test drive - a typical experience at dealerships or public "ride-and-drive" events. The impact of a typical test drive, often measured in minutes of driving, is not well understood. This paper first presents a synthesis of the literature on the effect of PEV test drives as they relate to consumer disposition toward PEVs. An analysis of data obtained from an Australian case study whereby attitudinal and stated preference data were collected pre- and post- test drive at public "ride-and-drive" event held Brisbane, Queensland in March 2014 using a custom-designed iPad application. Motorists' perceptions and choice preferences around PEVs were captured, revealing the relative importance of their experience behind the wheel. Using the Australian context as a case-study, this paper presents an exploratory study of consumers' stated preferences toward PEVs both before and after a short test drive.