484 resultados para science learning
Resumo:
While much of the control and many of the activities found in today’s classrooms have been placed in the hands of the learners and learning has become inquiry-based, there remains a need for teachers to use teaching tools that would facilitate this student-centered teaching process. This article identifies the K-W-L Chart as one such tool and follows a case study of four Kuwaiti ‘Family and Consumer Sciences’ teaching / learning events to evaluate their ability to enhance the learning outcomes of eight students. The research was designed from a qualitative, multi-tiered design approach and was assessed through a constant comparative method of data analysis of interview responses, classroom observations and worksheet-assessments. The results showed that the use of K-W-L Charts influenced the teachers and learners toward a more inquiry-based approach and facilitated a more student-centered and collaborative learning environment, raising the level of interest and the amount of personal input given by the students.
Resumo:
To recognize faces in video, face appearances have been widely modeled as piece-wise local linear models which linearly approximate the smooth yet non-linear low dimensional face appearance manifolds. The choice of representations of the local models is crucial. Most of the existing methods learn each local model individually meaning that they only anticipate variations within each class. In this work, we propose to represent local models as Gaussian distributions which are learned simultaneously using the heteroscedastic probabilistic linear discriminant analysis (PLDA). Each gallery video is therefore represented as a collection of such distributions. With the PLDA, not only the within-class variations are estimated during the training, the separability between classes is also maximized leading to an improved discrimination. The heteroscedastic PLDA itself is adapted from the standard PLDA to approximate face appearance manifolds more accurately. Instead of assuming a single global within-class covariance, the heteroscedastic PLDA learns different within-class covariances specific to each local model. In the recognition phase, a probe video is matched against gallery samples through the fusion of point-to-model distances. Experiments on the Honda and MoBo datasets have shown the merit of the proposed method which achieves better performance than the state-of-the-art technique.
Resumo:
The project 'Good practice for safeguarding student learning engagement in higher education institutions' commenced in late 2010 as a Competitive Grant with funding provided by the Australian Learning and Teaching Council. The project is now overseen by the Office for Learning and Teaching within the Australian Department of Industry, Innovation, Science, Research and Tertiary Education. The project was completed in December 2012. The project was lead by QUT and comprised of the project team: Professor Karen Nelson, (project leader), Ms Tracy Creagh, (project manager) and Adjunct Professor John Clarke. Commencing in late 2010 the project invited a total of eight institutions across Australia and New Zealand (including QUT) who had either: existing programs and activities that monitored student learning engagement (MSLE); were in the early stages of implementing MSLE programs, or; who were piloting MSLE activities. As well, the project involved an advisory group and project evaluator comprising of academic and professional staff across two additional universities.
Resumo:
Classroom emotional climates are interrelated with students’ engagement with university courses. Despite growing interest in emotions and emotional climate research, little is known about the ways in which social interactions and different subject matter mediate emotional climates in preservice science teacher education classes. In this study we investigated the emotional climate and associated classroom interactions in a preservice science teacher education class. We were interested in the ways in which salient classroom interactions were related to the emotional climate during lessons centered on debates about science-based issues (e.g., nuclear energy alternatives). Participants used audience response technology to indicate their perceptions of the emotional climate. Analysis of conversation for salient video clips and analysis of non-verbal conduct (acoustic parameters, body movements, and facial expressions) supplemented emotional climate data. One key contribution that this study makes to preservice science teacher education is to identify the micro-processes of successful and unsuccessful class interactions that were associated with positive and neutral emotional climate. The structure of these interactions can inform the practice of other science educators who wish to produce positive emotional climates in their classes. The study also extends and explicates the construct of intensity of emotional climate.
Resumo:
Laboratories and technical hands on learning have always been a part of Engineering and Science based university courses. They provide the interface where theory meets practice and students may develop professional skills through interacting with real objects in an environment that models appropriate standards and systems. Laboratories in many countries are facing challenges to their sustainable operation and effectiveness. In some countries such as Australia, significantly reduced funding and staff reduction is eroding a once strong base of technical infrastructure. Other countries such as Thailand are seeking to develop their laboratory infrastructure and are in need of staff skill development, management and staff structure in technical areas. In this paper the authors will address the need for technical development with reference to work undertaken in Thailand and Australia. The authors identify the roads which their respective university sectors are on and point out problems and opportunities. It is hoped that the cross roads where we meet will result in better directions for both.
Resumo:
Robotics is a valuable tool for engaging students in the hands-on application of science, technology, engineering, and mathematics (STEM) concepts. Robotics competitions such as FIRST LEGO League (FLL) can increase students’ interest in the STEM subjects and can foster their problem solving and teamwork skills. This paper reports on a study investigating students’ perceptions on the influence of participating in a FLL competition on their learning. The students completed questionnaires regarding their perceptions of their learning during the FLL challenge and were also interviewed to gain a deeper understanding of their questionnaire responses. The results show that the students were engaged with the FLL challenge and held positive views regarding their experience. The results also suggest that students involved with the FLL challenge improved their learning about real-world applications, problem solving, engagement, communication, and the application of the technology/engineering cycle.
Resumo:
Dynamic capability theory asserts that the learning capabilities of construction organisations influence the degree to which value-for-money (VfM) is achieved on collaborative projects. However, there has been little study conducted to verify this relationship. The evidence is particularly limited within the empirical context of infrastructure delivery in Australia. Primarily drawing on the theoretical perspectives of the resource-based view of the firm (e.g. Barney 1991), dynamic capabilities (e.g. Helfat et al. 2007), absorptive capacity (e.g. Lane et al. 2006) and knowledge management (e.g. Nonaka 1994), this paper conceptualises learning capability as a knowledge-based dynamic capability. Learning capability builds on the micro-foundations of high-order learning routines, which are deliberately developed by construction organisations for managing collaborative projects. Based on this conceptualisation of learning capability, an exploratory case study was conducted. The study investigated the operational and higher-order learning routines adopted by a project alliance team to successfully achieve VfM. The case study demonstrated that the learning routines of the alliance project were developed and modified by the continual joint learning activities of participant organisations. Project-level learning routines were found to significantly influence the development of organisational-level learning routines. In turn, the learning outcomes generated from the alliance project appeared to significantly influence the development of project management routines and contractual arrangements applied by the participant organisations in subsequent collaborative projects. The case study findings imply that the higher-order learning routines that underpin the learning capability of construction organisations have the potential to influence the VfM achieved on both current and future collaborative projects.
Resumo:
For humans and robots to communicate using natural language it is necessary for the robots to develop concepts and associated terms that correspond to the human use of words. Time and space are foundational concepts in human language, and to develop a set of words that correspond to human notions of time and space, it is necessary to take into account the way that they are used in natural human conversations, where terms and phrases such as `soon', `in a while', or `near' are often used. We present language learning robots called Lingodroids that can learn and use simple terms for time and space. In previous work, the Lingodroids were able to learn terms for space. In this work we extend their abilities by adding temporal variables which allow them to learn terms for time. The robots build their own maps of the world and interact socially to form a shared lexicon for location and duration terms. The robots successfully use the shared lexicons to communicate places and times to meet again.
Resumo:
Time and space are fundamental to human language and embodied cognition. In our early work we investigated how Lingodroids, robots with the ability to build their own maps, could evolve their own geopersonal spatial language. In subsequent studies we extended the framework developed for learning spatial concepts and words to learning temporal intervals. This paper considers a new aspect of time, the naming of concepts like morning, afternoon, dawn, and dusk, which are events that are part of day-night cycles, but are not defined by specific time points on a clock. Grounding of such terms refers to events and features of the diurnal cycle, such as light levels. We studied event-based time in which robots experienced day-night cycles that varied with the seasons throughout a year. Then we used meet-at tasks to demonstrate that the words learned were grounded, where the times to meet were morning and afternoon, rather than specific clock times. The studies show how words and concepts for a novel aspect of cyclic time can be grounded through experience with events rather than by times as measured by clocks or calendars
Resumo:
Purpose – The article aims to review a university course, offered to students in both Australia and Germany, to encourage them to learn about designing, implementing, marketing and evaluating information programs and services in order to build active and engaged communities. The concepts and processes of Web 2.0 technologies come together in the learning activities, with students establishing their own personal learning networks (PLNs). Design/methodology/approach – The case study examines the principles of learning and teaching that underpin the course and presents the students' own experiences of the challenges they faced as they explored the interactive, participative and collaborative dimensions of the web. Findings – The online format of the course and the philosophy of learning through play provided students with a safe and supportive environment for them to move outside of their comfort zones, to be creative, to experiment and to develop their professional personas. Reflection on learning was a key component that stressed the value of reflective practice in assisting library and information science (LIS) professionals to adapt confidently to the rapidly changing work environment. Originality/value – This study provides insights into the opportunities for LIS courses to work across geographical boundaries, to allow students to critically appraise library practice in different contexts and to become active participants in wider professional networks.
Resumo:
“Informed learning” is a pedagogy that focuses on learning subject content through engaging with academic or professional information practices. Adopting the position that more powerful learning is achieved where students are taught how to use information and subject content simultaneously, the research reported here investigated an informed learning lesson. Using phenomenographic methods, student’s experiences of the lesson were compared to what the teacher enacted in the classroom. Based on an analysis of student interviews using variation theory, three ways of experiencing the informed learning lesson emerged. Some students understood the lesson to be about learning to use information, i.e., researching and writing an academic paper, while others understood it as focusing on understanding both subject content and information use simultaneously. Although the results of this study are highly contextualized, the findings suggest criteria to consider when designing informed learning lessons.
Resumo:
Traditional craft industries need assistance with being transformed into creative industries; as such a transformation will support them to face the future competitive global market. Assistance such as advisory programs should serve long-term benefit for crafts industries as well as optimize self-help potential. Advisory programs using participatory methods will enable craftspeople and stakeholders to reveal resources and potencies, such as socio-cultural value, tradition and other kind of heritages, to generate new innovative ideas of craft design in a sustainable way.
Resumo:
This chapter focuses on learning and assessment as social and cultural practices situated within national and international policy contexts of educational change. Classroom assessment was researched using a conceptualization of knowing in action, or the ‘generative dance’. Fine-grained analyses of interactivity between students, and between teacher and student/s, and their patterns of participation in assessment and learning were conducted. The findings offer original insights into how learners draw on explicit and tacit forms of knowing in order to successfully participate in learning. Assessment is re-imagined as a dynamic space in which teachers learn about their students as they learn with their students, and where all students can be empowered to find success.
Resumo:
The effect of experience on pre- and post-alighting host selection in adult female Helicoverpa armigera was tested in an indoor flight cage, and in a large greenhouse. The moths had experienced either tobacco or tomato plants (both are hosts of H. armigera) for 3 days, or were given no experience. Individuals were then released and their host selection assessed. All individuals caught in the greenhouse were identified and tested for post-alighting acceptance on each host. Experience significantly influenced both pre- and post-alighting host selection in ovipositing moths. This modification in behaviour is attributed to 'learning', and presents the first detailed evidence for learning in moths. Possible behavioural mechanisms involved are discussed, and a hypothesis is presented regarding learning in post-alighting host acceptance. The existence of learning in H. armigera, a highly polyphagous agricultural pest, is discussed in the light of current theories on environmental predictability and the advantages of learning. Copyright 1998 The Association for the Study of Animal Behaviour.