322 resultados para linear measures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In structural brain MRI, group differences or changes in brain structures can be detected using Tensor-Based Morphometry (TBM). This method consists of two steps: (1) a non-linear registration step, that aligns all of the images to a common template, and (2) a subsequent statistical analysis. The numerous registration methods that have recently been developed differ in their detection sensitivity when used for TBM, and detection power is paramount in epidemological studies or drug trials. We therefore developed a new fluid registration method that computes the mappings and performs statistics on them in a consistent way, providing a bridge between TBM registration and statistics. We used the Log-Euclidean framework to define a new regularizer that is a fluid extension of the Riemannian elasticity, which assures diffeomorphic transformations. This regularizer constrains the symmetrized Jacobian matrix, also called the deformation tensor. We applied our method to an MRI dataset from 40 fraternal and identical twins, to revealed voxelwise measures of average volumetric differences in brain structure for subjects with different degrees of genetic resemblance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human connectome has recently become a popular research topic in neuroscience, and many new algorithms have been applied to analyze brain networks. In particular, network topology measures from graph theory have been adapted to analyze network efficiency and 'small-world' properties. While there has been a surge in the number of papers examining connectivity through graph theory, questions remain about its test-retest reliability (TRT). In particular, the reproducibility of structural connectivity measures has not been assessed. We examined the TRT of global connectivity measures generated from graph theory analyses of 17 young adults who underwent two high-angular resolution diffusion (HARDI) scans approximately 3 months apart. Of the measures assessed, modularity had the highest TRT, and it was stable across a range of sparsities (a thresholding parameter used to define which network edges are retained). These reliability measures underline the need to develop network descriptors that are robust to acquisition parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in diffusion-weighted MRI (DWI) have enabled studies of complex white matter tissue architecture in vivo. To date, the underlying influence of genetic and environmental factors in determining central nervous system connectivity has not been widely studied. In this work, we introduce new scalar connectivity measures based on a computationally-efficient fast-marching algorithm for quantitative tractography. We then calculate connectivity maps for a DTI dataset from 92 healthy adult twins and decompose the genetic and environmental contributions to the variance in these metrics using structural equation models. By combining these techniques, we generate the first maps to directly examine genetic and environmental contributions to brain connectivity in humans. Our approach is capable of extracting statistically significant measures of genetic and environmental contributions to neural connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key question in diffusion imaging is how many diffusion-weighted images suffice to provide adequate signal-to-noise ratio (SNR) for studies of fiber integrity. Motion, physiological effects, and scan duration all affect the achievable SNR in real brain images, making theoretical studies and simulations only partially useful. We therefore scanned 50 healthy adults with 105-gradient high-angular resolution diffusion imaging (HARDI) at 4T. From gradient image subsets of varying size (6 ≤ N ≤ 94) that optimized a spherical angular distribution energy, we created SNR plots (versus gradient numbers) for seven common diffusion anisotropy indices: fractional and relative anisotropy (FA, RA), mean diffusivity (MD), volume ratio (VR), geodesic anisotropy (GA), its hyperbolic tangent (tGA), and generalized fractional anisotropy (GFA). SNR, defined in a region of interest in the corpus callosum, was near-maximal with 58, 66, and 62 gradients for MD, FA, and RA, respectively, and with about 55 gradients for GA and tGA. For VR and GFA, SNR increased rapidly with more gradients. SNR was optimized when the ratio of diffusion-sensitized to non-sensitized images was 9.13 for GA and tGA, 10.57 for FA, 9.17 for RA, and 26 for MD and VR. In orientation density functions modeling the HARDI signal as a continuous mixture of tensors, the diffusion profile reconstruction accuracy rose rapidly with additional gradients. These plots may help in making trade-off decisions when designing diffusion imaging protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Index tracking is an investment approach where the primary objective is to keep portfolio return as close as possible to a target index without purchasing all index components. The main purpose is to minimize the tracking error between the returns of the selected portfolio and a benchmark. In this paper, quadratic as well as linear models are presented for minimizing the tracking error. The uncertainty is considered in the input data using a tractable robust framework that controls the level of conservatism while maintaining linearity. The linearity of the proposed robust optimization models allows a simple implementation of an ordinary optimization software package to find the optimal robust solution. The proposed model of this paper employs Morgan Stanley Capital International Index as the target index and the results are reported for six national indices including Japan, the USA, the UK, Germany, Switzerland and France. The performance of the proposed models is evaluated using several financial criteria e.g. information ratio, market ratio, Sharpe ratio and Treynor ratio. The preliminary results demonstrate that the proposed model lowers the amount of tracking error while raising values of portfolio performance measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acculturation is commonly defined as a dynamic and multidimensional process in which individuals and groups change over time when coming into contact with another culture. Despite the emphasis on acculturation as a process of change over time, few researchers have directly assessed this hypothesis. The current study first identifies and then examines "stable" and "dynamic" dimensions of acculturation within a 4-year prospective study of 433 first- and second-generation Chinese- and Korean-American college students. Separate growth model analyses revealed significant linear change for first-generation students toward greater U.S. acculturation. In comparison, tests of linear and quadratic change for second-generation students were not significant. When stratifying by gender, acculturation increased for women but there was no significant change in acculturation for men. While all students reported increases in alcohol consumption over the study period, changes in acculturation predicted changes in alcohol consumption only for women. Chinese men showed greater increases in alcohol consumption than Korean men but there was no effect for ethnicity among women. There was significant individual variability in the models, which underscores the importance of examining change prospectively through within and between person analyses. The findings highlight the importance of examining acculturation changes over time for different migrant groups with implications for further development of acculturation measures, research methodologies, and health interventions. More prospective research designs of acculturation are needed to examine changes in health behavior and overall adaptation across migrant groups at varying stages of development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is one of the major techniques used for determining the condition of the cellulose based paper and pressboard components in large oil/paper insulated power transformers. This technique typically makes use of a sinusoidal voltage source swept from 0.1 mHz to 1 kHz. The excitation test voltage source used must meet certain characteristics, such as high output voltage, high fidelity, low noise and low harmonic content. The amplifier used; in the test voltage source; must be able to drive highly capacitive loads. This paper proposes that a switch-mode assisted linear amplifier (SMALA) can be used in the test voltage source to meet these criteria. A three level SMALA prototype amplifier was built to experimentally demonstrate the effectiveness of this proposal. The developed SMALA prototype shows no discernable harmonic distortion in the output voltage waveform, or the need for output filters, and is therefore seen as a preferable option to pulse width modulated digital amplifiers. The lack of harmonic distortion and high frequency switching noise in the output voltage of this SMALA prototype demonstrates its feasibility for applications in FDS, particularly on highly capacitive test objects such as transformer insulation systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study estimates the environmental efficiency of international listed firms in 10 worldwide sectors from 2007 to 2013 by applying an order-m method, a non-parametric approach based on free disposal hull with subsampling bootstrapping. Using a conventional output of gross profit and two conventional inputs of labor and capital, this study examines the order-m environmental efficiency accounting for the presence of each of 10 undesirable inputs/outputs and measures the shadow prices of each undesirable input and output. The results show that there is greater potential for the reduction of undesirable inputs rather than bad outputs. On average, total energy, electricity, or water usage has the potential to be reduced by 50%. The median shadow prices of undesirable inputs, however, are much higher than the surveyed representative market prices. Approximately 10% of the firms in the sample appear to be potential sellers or production reducers in terms of undesirable inputs/outputs, which implies that the price of each item at the current level has little impact on most of the firms. Moreover, this study shows that the environmental, social, and governance activities of a firm do not considerably affect environmental efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a design and fabrication method to enable simpler manufacturing of more efficient organic solar cell modules using a modified flat panel deposition technique. Many mini-cell pixels are individually connected to each other in parallel forming a macro-scale solar cell array. The pixel size of each array is optimized through experimentation to maximize the efficiency of the whole array. We demonstrate that integrated organic solar cell modules with a scalable current output can be fabricated in this fashion and can also be connected in series to generate a scalable voltage output.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle GPS devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of two anti-speeding advertisements by incorporating both self-report and objective measures of speeding behaviour. In addition, this study aimed to compare the findings derived from these different measurement approaches. Methods Young drivers (N = 20, Mage = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. Whilst viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout® GPS device was then installed into participants’ vehicles for one week to measure on-road speed-related driving behaviour. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behaviour. Results There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behaviour and the objective driving data (as assessed via the GPS devices). Conclusions This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traffic law enforcement sanctions can impact on road user behaviour through general and specific deterrence mechanisms. The manner in which specific deterrence can influence recidivist behaviour can be conceptualised in different ways. While any reduction in speeding will have road safety benefits, the ways in which a ‘reduction’ is determined deserves greater methodological attention and has implications for countermeasure evaluation more generally. The primary aim of this research was to assess the specific deterrent impact of penalty increases for speeding offences in Queensland, Australia, in 2003 on two cohorts of drivers detected for speeding prior to and after the penalty changes were investigated. Since the literature is relatively silent on how to assess recidivism in the speeding context, the secondary research aim was to contribute to the literature regarding ways to conceptualise and measure specific deterrence in the speeding context. We propose a novel way of operationalising four measures which reflect different ways in which a specific deterrence effect could be conceptualised: (1) the proportion of offenders who re-offended in the follow up period; (2) the overall frequency of re-offending in the follow up period; (3) the length of delay to re-offence among those who re-offended; and (4) the average number of re-offences during the follow up period among those who re-offended. Consistent with expectations, results suggested an absolute deterrent effect of penalty changes, as evidenced by significant reductions in the proportion of drivers who re-offended and the overall frequency of re-offending, although effect sizes were small. Contrary to expectations, however, there was no evidence of a marginal specific deterrent effect among those who re-offended, with a significant reduction in the length of time to re-offence and no significant change in the average number of offences committed. Additional exploratory analyses investigating potential influences of the severity of the index offence, offence history, and method of detection revealed mixed results. Access to additional data from various sources suggested that the main findings were not influenced by changes in speed enforcement activity, public awareness of penalty changes, or driving exposure during the study period. Study limitations and recommendations for future research are discussed with a view to promoting more extensive evaluations of penalty changes and better understanding of how such changes may impact on motorists’ perceptions of enforcement and sanctions, as well as on recidivist behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the tau-leaping framework to past information. Using the theta-trapezoidal tau-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k >= 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.