296 resultados para contrast mining
Resumo:
This paper discusses some of the sensing technologies and control approaches available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.
Resumo:
Effectively capturing opportunities requires rapid decision-making. We investigate the speed of opportunity evaluation decisions by focusing on firms' venture termination and venture advancement decisions. Experience, standard operating procedures, and confidence allow firms to make opportunity evaluation decisions faster; we propose that a firm's attentional orientation, as reflected in its project portfolio, limits the number of domains in which these speed-enhancing mechanisms can be developed. Hence firms' decision speed is likely to vary between different types of decisions. Using unique data on 3,269 mineral exploration ventures in the Australian mining industry, we find that firms with a higher degree of attention toward earlier-stage exploration activities are quicker to abandon potential opportunities in early development but slower to do so later, and that such firms are also slower to advance on potential opportunities at all stages compared to firms that focus their attention differently. Market dynamism moderates these relationships, but only with regard to initial evaluation decisions. Our study extends research on decision speed by showing that firms are not necessarily fast or slow regarding all the decisions they make, and by offering an opportunity evaluation framework that recognizes that decision makers can, in fact often do, pursue multiple potential opportunities simultaneously.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
This research contributes novel techniques for identifying and evaluating business process risks and analysing human resource behaviour. The developed techniques use predefined indicators to identify process risks in individual process instances, evaluate overall process risk, predict process outcomes and analyse human resource behaviour based on the analysis of information about process executions recorded in event logs by information systems. The results of this research can help managers to more accurately evaluate the risk exposure of their business processes, to more objectively evaluate the performance of their employees, and to identify opportunities for improvement of resource and process performance.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
In recent years a significant amount of research has been undertaken in collision avoidance and personnel location technology in order to reduce the number of incidents involving pedestrians and mobile plant equipment which are a high risk in underground coal mines. Improving the visibility of pedestrians to drivers would potentially reduce the likelihood of these incidents. In the road safety context, a variety of approaches have been used to make pedestrians more conspicuous to drivers at night (including vehicle and roadway lighting technologies and night vision enhancement systems). However, emerging research from our group and others has demonstrated that clothing incorporating retroreflective markers on the movable joints as well as the torso can provide highly significant improvements in pedestrian visibility in reduced illumination. Importantly, retroreflective markers are most effective when positioned on the moveable joints creating a sensation of “biological motion”. Based only on the motion of points on the moveable joints of an otherwise invisible body, observers can quickly recognize a walking human form, and even correctly judge characteristics such as gender and weight. An important and as yet unexplored question is whether the benefits of these retroreflective clothing configurations translate to the context of mining where workers are operating under low light conditions. Given that the benefits of biomotion clothing are effective for both young and older drivers, as well as those with various eye conditions common in those >50 years reinforces their potential application in the mining industry which employs many workers in this age bracket. This paper will summarise the visibility benefits of retroreflective markers in a biomotion configuration for the mining industry, highlighting that this form of clothing has the potential to be an affordable and convenient way to provide a sizeable safety benefit. It does not involve modifications to vehicles, drivers, or infrastructure. Instead, adding biomotion markings to standard retroreflective vests can enhance the night-time conspicuity of mining workers by capitalising on perceptual capabilities that have already been well documented.
Resumo:
In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.
Resumo:
This chapter addresses a topic of growing significance to green criminology - the harmful effects of mining on local communities and the environment (Ruggiero and South 2013; White 2013a). While mining has long been recognised as an agent of environmental harm (White 2013a), less recognised is that its global expansion also has harmful effects on localised patterns of violence, work and community life in mining towns. Australia provides an excellent case study for exploring some of these mining impacts.
Resumo:
High contrast ratios between windows and surrounding surfaces could cause reduced visibility or discomfort for occupants. Consequently, building users may choose to intervene in lighting conditions through closing blinds and turning on the lamps in order to enhance indoor visual comfort. Such interventions increase projected electric lighting use in buildings. One simple method to prevent these problematic issues is increasing the luminance of the areas surrounding to the bright surface of windows through the use of energy-efficient supplementary lighting, such Light Emitting Diodes (LEDs). This paper reports on the results of a pilot study in conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system of approximately 18 W could reduce the luminance contrast on the window wall from values in the order of 117:1 to 33:1. In addition, the results of this experiment suggested that this supplementary strategy could increase the subjective scale appraisal of window appearance by approximately 33%, as well as reducing the likelihood of users’ intention to turn on the ceiling lights by about 27%. It could also diminish the likelihood of occupants’ intention to move the blind down by more than 90%.
Resumo:
Background: Transthoracic echocardiography (TTE) during extra corporeal membrane oxygenation (ECMO) is important but can be technically challenging. Contrast-specific TTE can improve imaging in suboptimal studies. These contrast microspheres are hydrodynamically labile structures. This study assessed the feasibility of contrast echocardiography (CE) during venovenous (VV) ECMO in a validated ovine model. Method: Twenty-four sheep were commenced on VV ECMO. Parasternal long-axis (Plax) and short-axis (Psax) views were obtained pre- and postcontrast while on VV ECMO. Endocardial definition scores (EDS) per segment were graded: 1 = good, 2 = suboptimal 3 = not seen. Endocardial border definition score index (EBDSI) was calculated for each view. Endocardial length (EL) in the Plax view for the left ventricle (LV) and right ventricle (RV) was measured. Results: Summation EDS data for the LV and RV for unenhanced TTE (UE) versus CE TTE imaging: EDS 1 = 289 versus 346, EDS 2 = 38 versus 10, EDS 3 = 33 versus 4, respectively. Wilcoxon matched-pairs rank-sign tests showed a significant ranking difference (improvement) pre- and postcontrast for the LV (P < 0.0001), RV (P < 0.0001) and combined ventricular data (P < 0.0001). EBDSI for CE TTE was significantly lower than UE TTE for the LV (1.05 ± 0.17 vs. 1.22 ± 0.38, P = 0.0004) and RV (1.06 ± 0.22 vs. 1.42 ± 0.47, P = 0.0.0006) respectively. Visualized EL was significantly longer in CE versus UE for both the LV (58.6 ± 11.0 mm vs. 47.4 ± 11.7 mm, P < 0.0001) and the RV (52.3 ± 8.6 mm vs. 36.0 ± 13.1 mm, P < 0.0001), respectively. Conclusions: Despite exposure to destructive hydrodynamic forces, CE is a feasible technique in an ovine ECMO model. CE results in significantly improved EDS and increased EL.
Resumo:
This paper proposes the Clinical Pathway Analysis Method (CPAM) approach that enables the extraction of valuable organisational and medical information on past clinical pathway executions from the event logs of healthcare information systems. The method deals with the complexity of real-world clinical pathways by introducing a perspective-based segmentation of the date-stamped event log. CPAM enables the clinical pathway analyst to effectively and efficiently acquire a profound insight into the clinical pathways. By comparing the specific medical conditions of patients with the factors used for characterising the different clinical pathway variants, the medical expert can identify the best therapeutic option. Process mining-based analytics enables the acquisition of valuable insights into clinical pathways, based on the complete audit traces of previous clinical pathway instances. Additionally, the methodology is suited to assess guideline compliance and analyse adverse events. Finally, the methodology provides support for eliciting tacit knowledge and providing treatment selection assistance.
Resumo:
Rolling-element bearing failures are the most frequent problems in rotating machinery, which can be catastrophic and cause major downtime. Hence, providing advance failure warning and precise fault detection in such components are pivotal and cost-effective. The vast majority of past research has focused on signal processing and spectral analysis for fault diagnostics in rotating components. In this study, a data mining approach using a machine learning technique called anomaly detection (AD) is presented. This method employs classification techniques to discriminate between defect examples. Two features, kurtosis and Non-Gaussianity Score (NGS), are extracted to develop anomaly detection algorithms. The performance of the developed algorithms was examined through real data from a test to failure bearing. Finally, the application of anomaly detection is compared with one of the popular methods called Support Vector Machine (SVM) to investigate the sensitivity and accuracy of this approach and its ability to detect the anomalies in early stages.
Resumo:
Big Data and predictive analytics have received significant attention from the media and academic literature throughout the past few years, and it is likely that these emerging technologies will materially impact the mining sector. This short communication argues, however, that these technological forces will probably unfold differently in the mining industry than they have in many other sectors because of significant differences in the marginal cost of data capture and storage. To this end, we offer a brief overview of what Big Data and predictive analytics are, and explain how they are bringing about changes in a broad range of sectors. We discuss the “N=all” approach to data collection being promoted by many consultants and technology vendors in the marketplace but, by considering the economic and technical realities of data acquisition and storage, we then explain why a “n « all” data collection strategy probably makes more sense for the mining sector. Finally, towards shaping the industry’s policies with regards to technology-related investments in this area, we conclude by putting forward a conceptual model for leveraging Big Data tools and analytical techniques that is a more appropriate fit for the mining sector.
Resumo:
Self-organized Bi lines that are only 1.5 nm wide can be grown without kinks or breaks on Si(0 0 1) surfaces to lengths of up to 500 nm. Constant-current topographical images of the lines, obtained with the scanning tunneling microscope, have a striking bias dependence. Although the lines appear darker than the Si terraces at biases below ≈∣1.2∣ V, the contrast reverses at biases above ≈∣1.5∣ V. Between these two ranges the lines and terraces are of comparable brightness. It has been suggested that this bias dependence may be due to the presence of a semiconductor-like energy gap within the line. Using ab initio calculations it is demonstrated that the energy gap is too small to explain the experimentally observed bias dependence. Consequently, at this time, there is no compelling explanation for this phenomenon. An alternative explanation is proposed that arises naturally from calculations of the tunneling current, using the Tersoff–Hamann approximation, and an examination of the electronic structure of the line.
Resumo:
With the explosion of information resources, there is an imminent need to understand interesting text features or topics in massive text information. This thesis proposes a theoretical model to accurately weight specific text features, such as patterns and n-grams. The proposed model achieves impressive performance in two data collections, Reuters Corpus Volume 1 (RCV1) and Reuters 21578.