297 resultados para axial gauges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone diseases such as rickets and osteoporosis cause significant reduction in bone quantity and quality, which leads to mechanical abnormalities. However, the precise ultrastructural mechanism by which altered bone quality affects mechanical properties is not clearly understood. Here we demonstrate the functional link between altered bone quality (reduced mineralization) and abnormal fibrillar-level mechanics using a novel, real-time synchrotron X-ray nanomechanical imaging method to study a mouse model with rickets due to reduced extrafibrillar mineralization. A previously unreported N-ethyl-N-nitrosourea (ENU) mouse model for hypophosphatemic rickets (Hpr), as a result of missense Trp314Arg mutation of the phosphate regulating gene with homologies to endopeptidase on the X chromosome (Phex) and with features consistent with X-linked hypophosphatemic rickets (XLHR) in man, was investigated using in situ synchrotron small angle X-ray scattering to measure real-time changes in axial periodicity of the nanoscale mineralized fibrils in bone during tensile loading. These determine nanomechanical parameters including fibril elastic modulus and maximum fibril strain. Mineral content was estimated using backscattered electron imaging. A significant reduction of effective fibril modulus and enhancement of maximum fibril strain was found in Hpr mice. Effective fibril modulus and maximum fibril strain in the elastic region increased consistently with age in Hpr and wild-type mice. However, the mean mineral content was ∼21% lower in Hpr mice and was more heterogeneous in its distribution. Our results are consistent with a nanostructural mechanism in which incompletely mineralized fibrils show greater extensibility and lower stiffness, leading to macroscopic outcomes such as greater bone flexibility. Our study demonstrates the value of in situ X-ray nanomechanical imaging in linking the alterations in bone nanostructure to nanoscale mechanical deterioration in a metabolic bone disease. Copyright

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ankylosing Spondylitis (AS) is a common inflammatory rheumatic disease with a predilection for the axial skeleton, affecting 0.2% of the population. Current diagnostic criteria rely on a composite of clinical and radiological changes, with a mean time to diagnosis of 5 to 10 years. In this study we employed nano liquid-chromatography mass spectrometry analysis to detect and quantify proteins and small compounds including endogenous peptides and metabolites in serum from 18 AS patients and nine healthy individuals. We identified a total of 316 proteins in serum, of which 22 showed significant up- or down-regulation (p < 0.05) in AS patients. Receiver operating characteristic analysis of combined levels of serum amyloid P component and inter-α-trypsin inhibitor heavy chain 1 revealed high diagnostic value for Ankylosing Spondylitis (area under the curve = 0.98). We also depleted individual sera of proteins to analyze endogenous peptides and metabolic compounds. We detected more than 7000 molecular features in patients and healthy individuals. Quantitative MS analysis revealed compound profiles that correlate with the clinical assessment of disease activity. One molecular feature identified as a Vitamin D3 metabolite-(23S,25R)-25-hydroxyvitamin D3 26,23-peroxylactone-was down-regulated in AS. The ratio of this vitamin D metabolite versus vitamin D binding protein serum levels was also altered in AS as compared with controls. These changes may contribute to pathological skeletal changes in AS. Our study is the first example of an integration of proteomic and metabolomic techniques to find new biomarker candidates for the diagnosis of Ankylosing Spondylitis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To study the anisotropic mechanical properties of the thoracic aorta in porcine. Methods: Twenty-one porcine thoracic aortas were collected and categorized into three groups. The aortas were then cut through in their axial directions and expanded into two-dimensional planes. Then, by setting the length direction of the planar aortas (i.e., axial directions of the aortas) as 0°, each planar aorta was counterclockwisely cut into 8 samples with orientation of 30°, 45°, 60°, 90°, 120°, 135°, 150° and 180°, respectively. Finally, the uniaxial tensile tests were applied on three groups of samples at the loading rates of 1, 5 and 10 mm/min, respectively, to obtain the elastic modulus and ultimate stress of the aorta in different directions and at different loading rates. Results: The stress-strain curves exhibited different viscoelastic behaviors. With the increase of sample orientations, the elastic modulus gradually increased from 30°, reached the maximum value at 90°, and then gradually decreased till 180°. The variation trend of ultimate stress was similar to that of elastic modulus. Moreover, different loading rates showed a significant influence on the results of elastic modulus and ultimate stress, but a weak influence on the anisotropic degree. Conclusions: The porcine thoracic aorta is highly anisotropic. This research finding provides parameter references for assignment of material properties in finite element modeling, and is significant for understanding biomechanical properties of the arteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface effect on the four independent elastic constants of nanohoneycombs is investigated in this paper. The axial deformation of the horizontal cell wall is included, comparing to the Gibson's method, and the contributions of the two components of surface stress (i.e. surface residual stress and surface elasticity) are discussed. The result shows that the regular hexagonal honeycomb is not isotropic but orthotropic. An increase in the cell-wall thickness t leads to an increase in the discrepancy of the Young's moduli in both directions. Furthermore, the surface residual stress dominates the surface effect on the elastic constants when t < 15 nm (or the relative density <0.17), which is in contrast to that the surface elasticity does when t > 15 nm (or the relative density > 0.17) for metal Al. The present structure and theory may be useful in the design of future nanodevices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rupture of vulnerable atheromatous plaque in the carotid and coronary arteries often leads to stroke and heart attack respectively. The mechanism of blood flow and plaque rupture in stenotic arteries is still not fully understood. A three dimensional rigid wall model was solved under steady state conditions and unsteady conditions by assuming a time-varying inlet velocity profile to investigate the relative importance of axial forces and pressure drops in arteries with asymmetric stenosis. Flow-structure interactions were investigated for the same geometry and the results were compared with those retrieved with the corresponding 2D cross-section structural models. The Navier-Stokes equations were used as the governing equations for the fluid. The tube wall was assumed hyperelastic, homogeneous, isotropic and incompressible. The analysis showed that the three dimensional behavior of velocity, pressure and wall shear stress is in general very different from that predicted by cross-section models. Pressure drop across the stenosis was found to be much higher than shear stress. Therefore, pressure may be the more important mechanical trigger for plaque rupture other than shear stress, although shear stress is closely related to plaque formation and progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we address the problem of stabilisation of robots subject to nonholonommic constraints and external disturbances using port-Hamiltonian theory and smooth time-invariant control laws. This should be contrasted with the commonly used switched or time-varying laws. We propose a control design that provides asymptotic stability of an manifold (also called relative equilibria)-due to the Brockett condition this is the only type of stabilisation possible using smooth time-invariant control laws. The equilibrium manifold can be shaped to certain extent to satisfy specific control objectives. The proposed control law also incorporates integral action, and thus the closed-loop system is robust to unknown constant disturbances. A key step in the proposed design is a change of coordinates not only in the momentum, but also in the position vector, which differs from coordinate transformations previously proposed in the literature for the control of nonholonomic systems. The theoretical properties of the control law are verified via numerical simulation based on a robotic ground vehicle model with differential traction wheels and non co-axial centre of mass and point of contact.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of loading patterns of the patellar tendon during activity is important in understanding tendon injury. We used transmission-mode ultrasonography to investigate patellar tendon loading during squatting in adults with and without tendinopathy. It was hypothesized that axial ultrasonic velocity, a surrogate measure of the elastic modulus of tendon, would be lower in tendinopathy. Ultrasound velocity was measured in both patellar tendons of adults with unilateral patellar tendinopathy (n=9) and in healthy controls (n=16) during a bilateral squat manoeuvre. Sagittal knee movement was measured simultaneously with an electrogoniometer. Statistical comparisons between healthy and injured tendons were made using 2–way mixed–design ANOVAs. Axial ultrasound velocity in both symptomatic and asymptomatic patellar tendons in tendinopathy was approximately 15% higher than in healthy tendons at the commencement (F1,23=5.2, P<.05) and completion (F1,23=4.5, P<.05) of the squat. While peak velocity was ≈5% higher during both flexion (F1,23=5.4, P<.05) and extension (F1,23=5.3, P<.05) phases, there was no significant between–group difference at the mid–point of the movement. There were no significant differences in the rate and magnitude of knee movement between groups. Although further research is required, these findings suggest enhanced baseline muscle activity in patellar tendinopathy and highlight fresh avenues for its clinical management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of tendon loading patterns during gait is important for understanding the pathogenesis of tendon "overuse" injury. Given that the speed of propagation of ultrasound in tendon is proportional to the applied load, this study used a noninvasive ultrasonic transmission technique to measure axial ultrasonic velocity in the right Achilles tendon of 27 healthy adults (11 females and 16 males; age, 26 ± 9 years; height, 1.73 ± 0.07 m; weight, 70.6 ± 21.2 kg), walking at self-selected speed (1.1 ± 0.1 m/s), and running at fixed slow speed (2 m/s) on a treadmill. Synchronous measures of ankle kinematics, spatiotemporal gait parameters, and vertical ground reaction forces were simultaneously measured. Slow running was associated with significantly higher cadence, shorter step length, but greater range of ankle movement, higher magnitude and rate of vertical ground reaction force, and higher ultrasonic velocity in the tendon than walking (P < 0.05). Ultrasonic velocity in the Achilles tendon was highly reproducible during walking and slow running (mean within-subject coefficient of variation < 2%). Ultrasonic maxima (P1, P2) and minima (M1, M2) were significantly higher and occurred earlier in the gait cycle (P1, M1, and M2) during running than walking (P < 0.05). Slow running was associated with higher and earlier peaks in loading of the Achilles tendon than walking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To provide a summary of the classic paper "Differences in the accommodation stimulus response curves of adult myopes and emmetropes" published in Ophthalmic and Physiological Optics in 1998 and to provide an update on the topic of accommodation errors in myopia. Summary The accommodation responses of 33 participants (10 emmetropes, 11 early onset myopes and 12 late onset myopes) aged 18-31 years were measured using the Canon Autoref R-1 free space autorefractor using three methods to vary the accommodation demand: decreasing distance (4 m to 0.25 cm), negative lenses (0 to -4 D at 4 m) and positive lenses (+4 to 0 D at 0.25 m). We observed that the greatest accommodation errors occurred for the negative lens method whereas minimal errors were observed using positive lenses. Adult progressing myopes had greater lags of accommodation than stable myopes at higher demands induced by negative lenses. Progressing myopes had shallower response gradients than the emmetropes and stable myopes; however the reduced gradient was much less than that observed in children using similar methods. Recent Findings This paper has been often cited as evidence that accommodation responses at near may be primarily reduced in adults with progressing myopia and not in stable myopes and/or that challenging accommodation stimuli (negative lenses with monocular viewing) are required to generate larger accommodation errors. As an analogy, animals reared with hyperopic errors develop axial elongation and myopia. Retinal defocus signals are presumably passed to the retinal pigment epithelium and choroid and then ultimately the sclera to modify eye length. A number of lens treatments that act to slow myopia progression may partially work through reducing accommodation errors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim was to investigate the effects of the GABAB receptor antagonist, CGP46381, on form-deprivation myopia (FDM) in guinea pigs. Twenty-four guinea pigs had monocular visual deprivation induced using a diffuser for 11 days (day 14 to 25). The deprived eyes were treated with daily subconjunctival injections (100 μl) of either 2% CGP46381, 0.2% CGP46381, or saline or received no injection. The fellow eyes were left untreated. Another six animals received no treatment. At the start and end of the treatment period, ocular refractions were measured using retinoscopy and vitreous chamber depth (VCD) and axial length (AL) using A-scan ultrasound. All of the deprived eyes developed relative myopia (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001). The highest dose tested, 2% CGP46381, significantly inhibited myopia development compared to saline (2% CGP46381: -1.08 ± 0.40 D, saline: -4.33 ± 0.67 D, P < 0.01). The majority of these effects were due to less AL (2% CGP46381: 0.03 ± 0.01 mm, saline: 0.13 ± 0.02 mm, P < 0.01) and VCD (2% CGP46381: 0.02 ± 0.01 mm, saline: 0.08 ± 0.01 mm, P < 0.01) elongation. The lower dose tested, 0.2% CGP46381, did not significantly inhibit FDM (P > 0.05). Subconjunctival injections of CGP46381 inhibit FDM development in guinea pigs in a dose-dependent manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computational technique of the full ranges of the second-order inelastic behaviour evaluation of steel-concrete composite structure is not always sought forgivingly, and therefore it hinders the development and application of the performance-based design approach for the composite structure. To this end, this paper addresses of the advanced computational technique of the higher-order element with the refined plastic hinges to capture the all-ranges behaviour of an entire steel-concrete composite structure. Moreover, this paper presents the efficient and economical cross-section analysis to evaluate the element section capacity of the non-uniform and arbitrary composite section subjected to the axial and bending interaction. Based on the same single algorithm, it can accurately and effectively evaluate nearly continuous interaction capacity curve from decompression to pure bending technically, which is the important capacity range but highly nonlinear. Hence, this cross-section analysis provides the simple but unique algorithm for the design approach. In summary, the present nonlinear computational technique can simulate both material and geometric nonlinearities of the composite structure in the accurate, efficient and reliable fashion, including partial shear connection and gradual yielding at pre-yield stage, plasticity and strain-hardening effect due to axial and bending interaction at post-yield stage, loading redistribution, second-order P-δ and P-Δ effect, and also the stiffness and strength deterioration. And because of its reliable and accurate behavioural evaluation, the present technique can be extended for the design of the high-strength composite structure and potentially for the fibre-reinforced concrete structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete filled steel tubular (CFST) columns are increasingly used in bridge piers and high-rise buildings due to their excellent axial load bearing capacity. These columns may experience severe damage or failure due to transverse impact of vehicle collisions. In this study, numerical investigation is carried out to evaluate the effect of carbon fibre reinforced polymer (CFRP) strengthening CFST columns under vehicular impact. The CFRP composites damage mechanisms are simulated to account four different failure criteria. The cohesive elements are introduced as interface element to properly simulate the adhesively bonded regime. Simplified vehicle model is also developed to represent real vehicle behaviour. The FE analysis results show that externally bonded CFRP composites improve the impact resistance capacity compared to bare CFST column.