329 resultados para Tomate - Pest control
Resumo:
This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.
Resumo:
This paper serves as a first study on the implementation of control strategies developed using a kinematic reduction onto test bed autonomous underwater vehicles (AUVs). The equations of motion are presented in the framework of differential geometry, including external dissipative forces, as a forced affine connection control system. We show that the hydrodynamic drag forces can be included in the affine connection, resulting in an affine connection control system. The definitions of kinematic reduction and decoupling vector field are thus extended from the ideal fluid scenario. Control strategies are computed using this new extension and are reformulated for implementation onto a test-bed AUV. We compare these geometrically computed controls to time and energy optimal controls for the same trajectory which are computed using a previously developed algorithm. Through this comparison we are able to validate our theoretical results based on the experiments conducted using the time and energy efficient strategies.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. ----- ----- Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. ----- ----- Results: Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. ----- ----- Conclusions: Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.----- ----- Resumen: Objetivos: Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Pseudomonas aeruginosa y Staphylococcus aureus en soluciones para lentes de contacto o cuando éstas las adsorben. Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Acanthamoeba castellanii.----- ----- Métodos: Se sumergieron lentes etafilcon A en diversas concentraciones de nanopartículas de plata. Las células bacterianas fueron posteriormente expuestas a dichas lentes, y se compararon cantidades de células viables en la superficie de la lente o en la solución con las presentes en lentes etafilcon A que no habían sido sumergidas en plata. Trofozoítos de Acanthamoeba fueron expuestos a nanopartículas de plata y se examinó su capacidad para formar quistes.----- ----- Resultados: Las lentes que contienen nanopartículas de plata redujeron la viabilidad bacteriana y la adhesión. Hubo una curva de respuesta dependiente de la dosis, en la que 10 ppm o 20 ppm de plata mostró una reducción logarítmica > 5 en la viabilidad bacteriana tanto en la solución como en la superficie de la lente. Para Acanthamoeba, 20 ppm de plata redujeron la capacidad de formar quistes en aproximadamente 1 unidad logarítmica.----- ----- Conclusiones: Las nanopartículas de plata son agentes antimicrobianos eficaces y pueden reducir la capacidad de células bacterianas viables para colonizar las lentes de contacto una vez que se han incorporado en la lente.
Resumo:
This paper discusses the results of in-depth semi-structured interviews with 39 telecommuters from 12 Australian organisations. The paper serves two broad aims: firstly, it identifies current trends in telecommuting and offers a perspective on Australian developments. Secondly, it provides a focus on significant communication aspects of the Australian telecommuting experience. Findings are that the majority of interviewees reported overall satisfaction with telecommuting as an important contributor to their improved work and lifestyle outcomes. Overall, telecommuters appear to cope with communication aspects of their work environments. They also were not overreliant on advanced communications media when telecommuting. Difficulties as reported by telecommuter interviewees included: perceived discomfort over lack of management support for their telecommuting; reduced levels of interpersonal communication suggesting the likely need to adopt a ‘media mix’ approach to servicing their communication needs; problems of information access; and telecommuters’ reported levels of difficulty with their uses of some computer and communication technologies. Problems relating to telecommuters’ perceived professional and social isolation, were also identified. Finally, the paper underscores where organisational communication theorists and practitioners need to more energetically embrace the concepts of virtual work and telecommuting
Resumo:
In this paper, the performance of voltage-source converter-based shunt and series compensators used for load voltage control in electrical power distribution systems has been analyzed and compared, when a nonlinear load is connected across the load bus. The comparison has been made based on the closed-loop frequency resopnse characteristics of the compensated distribution system. A distribution static compensator (DSTATCOM) as a shunt device and a dynamic voltage restorer (DVR) as a series device are considered in the voltage-control mode for the comparison. The power-quality problems which these compensator address include voltage sags/swells, load voltage harmonic distortions, and unbalancing. The effect of various system parameters on the control performance of the compensator can be studied using the proposed analysis. In particular, the performance of the two compensators are compared with the strong ac supply (stiff source) and weak ac-supply (non-still source) distribution system. The experimental verification of the analytical results derived has been obtained using a laboratory model of the single-phase DSTATCOM and DVR. A generalized converter topology using a cascaded multilevel inverter has been proposed for the medium-voltage distribution system. Simulation studies have been performed in the PSCAD/EMTDC software to verify the results in the three-phase system.
Resumo:
Misperception of speed under low-contrast conditions has been identified as a possible contributor to motor vehicle crashes in fog. To test this hypothesis, we investigated the effects of reduced contrast on drivers’ perception and control of speed while driving under real-world conditions. Fourteen participants drove around a 2.85 km closed road course under three visual conditions: clear view and with two levels of reduced contrast created by diffusing filters on the windscreen and side windows. Three dependent measures were obtained, without view of the speedometer, on separate laps around the road course: verbal estimates of speed; adjustment of speed to instructed levels (25 to 70 km h-1); and estimation of minimum stopping distance. The results showed that drivers traveled more slowly under low-contrast conditions. Reduced contrast had little or no effect on either verbal judgments of speed or estimates of minimum stopping distance. Speed adjustments were significantly slower under low-contrast than clear conditions, indicating that, contrary to studies of object motion, drivers perceived themselves to be traveling faster under conditions of reduced contrast. Under real-world driving conditions, drivers’ ability to perceive and control their speed was not adversely affected by large variations in the contrast of their surroundings. These findings suggest that perceptions of self-motion and object motion involve neural processes that are differentially affected by variations in stimulus contrast as encountered in fog.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
Plant biosecurity requires statistical tools to interpret field surveillance data in order to manage pest incursions that threaten crop production and trade. Ultimately, management decisions need to be based on the probability that an area is infested or free of a pest. Current informal approaches to delimiting pest extent rely upon expert ecological interpretation of presence / absence data over space and time. Hierarchical Bayesian models provide a cohesive statistical framework that can formally integrate the available information on both pest ecology and data. The overarching method involves constructing an observation model for the surveillance data, conditional on the hidden extent of the pest and uncertain detection sensitivity. The extent of the pest is then modelled as a dynamic invasion process that includes uncertainty in ecological parameters. Modelling approaches to assimilate this information are explored through case studies on spiralling whitefly, Aleurodicus dispersus and red banded mango caterpillar, Deanolis sublimbalis. Markov chain Monte Carlo simulation is used to estimate the probable extent of pests, given the observation and process model conditioned by surveillance data. Statistical methods, based on time-to-event models, are developed to apply hierarchical Bayesian models to early detection programs and to demonstrate area freedom from pests. The value of early detection surveillance programs is demonstrated through an application to interpret surveillance data for exotic plant pests with uncertain spread rates. The model suggests that typical early detection programs provide a moderate reduction in the probability of an area being infested but a dramatic reduction in the expected area of incursions at a given time. Estimates of spiralling whitefly extent are examined at local, district and state-wide scales. The local model estimates the rate of natural spread and the influence of host architecture, host suitability and inspector efficiency. These parameter estimates can support the development of robust surveillance programs. Hierarchical Bayesian models for the human-mediated spread of spiralling whitefly are developed for the colonisation of discrete cells connected by a modified gravity model. By estimating dispersal parameters, the model can be used to predict the extent of the pest over time. An extended model predicts the climate restricted distribution of the pest in Queensland. These novel human-mediated movement models are well suited to demonstrating area freedom at coarse spatio-temporal scales. At finer scales, and in the presence of ecological complexity, exploratory models are developed to investigate the capacity for surveillance information to estimate the extent of red banded mango caterpillar. It is apparent that excessive uncertainty about observation and ecological parameters can impose limits on inference at the scales required for effective management of response programs. The thesis contributes novel statistical approaches to estimating the extent of pests and develops applications to assist decision-making across a range of plant biosecurity surveillance activities. Hierarchical Bayesian modelling is demonstrated as both a useful analytical tool for estimating pest extent and a natural investigative paradigm for developing and focussing biosecurity programs.
Resumo:
Recent perceptual-motor studies have revealed variations in learning trajectories of novices. Despite such observation, relatively little attention has been paid to studying individual differences in experienced performers’ perceptual-motor behaviors. The present study examined individual differences for a visual anticipation task. Experienced association football goalkeepers attempted to intercept penalty kicks taken with deceptive and non-deceptive kicking actions. Data revealed that differences in the action capabilities of goalkeepers affected the timing and accuracy of movement response behaviors. Faster goalkeepers tended to wait until later before initiating movement in comparison with slower goalkeepers. The study of affordances in sport environments offers a theoretical framework with which to overcome some of the reported methodological limitations in the visual anticipation literature.
Resumo:
The purpose of this book is to show why we should be concerned about virtual communities for people with physical, or more particularly mobility, impairments. The well-being model through a virtual community introduced here goes towards advancing the work begun by others, by adding for example a socio-political component. The model presented here provides practical insights into how strategic community investment can support people with disabilities and their families. Virtual communities are about engagement, quality of life and support, not just about information. The role of information technology in building and raising community capacity and social capital in socially and economically disadvantaged communities is also examined. Practical insights are offered into community support for people with chronic illness.
Resumo:
Somatic embryogenesis and transformation systems are indispensable modern plant breeding components since they provide an alternative platform to develop control strategies against the plethora of pests and diseases affecting many agronomic crops. This review discusses some of the factors affecting somatic embryogenesis and transformation, highlights the advantages and limitations of these systems and explores these systems as breeding tools for the development of crops with improved agronomic traits. The regeneration of non-chimeric transgenic crops through somatic embryogenesis with introduced disease and pest-resistant genes for instance, would be of significant benefit to growers worldwide.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
The ultimate goal of an authorisation system is to allocate each user the level of access they need to complete their job - no more and no less. This proves to be challenging in an organisational setting because on one hand employees need enough access to perform their tasks, while on the other hand more access will bring about an increasing risk of misuse - either intentionally, where an employee uses the access for personal benefit, or unintentionally through carelessness, losing the information or being socially engineered to give access to an adversary. With the goal of developing a more dynamic authorisation model, we have adopted a game theoretic framework to reason about the factors that may affect users’ likelihood to misuse a permission at the time of an access decision. Game theory provides a useful but previously ignored perspective in authorisation theory: the notion of the user as a self-interested player who selects among a range of possible actions depending on their pay-offs.
Resumo:
Bone loss may result from remodelling initiated by implant stress protection. Quantifying remodelling requires bone density distributions which can be obtained from computed tomography scans. Pre-operative scans of large animals however are rarely possible. This study aimed to determine if the contra-lateral bone is a suitable control for the purpose of quantifying bone remodelling. CT scans of 8 pairs of ovine tibia were used to determine the likeness of left and right bones. The deviation between the outer surfaces of the bone pairs was used to quantify geometric similarity. The density differences were determined by dividing the bones into discrete volumes along the shaft of the tibia. Density differences were also determined for fractured and contra-lateral bone pairs to determine the magnitude of implant related remodelling. Left and right ovine tibiae were found to have a high degree of similarity with differences of less than 1.0 mm in the outer surface deviation and density difference of less than 5% in over 90% of the shaft region. The density differences (10–40%) as a result of implant related bone remodelling were greater than left-right differences. Therefore, for the purpose of quantifying bone remodelling in sheep, the contra-lateral tibia may be considered an alternative to a pre-operative control.