465 resultados para Threat detection
Resumo:
In this paper, a polynomial time algorithm is presented for solving the Eden problem for graph cellular automata. The algorithm is based on our neighborhood elimination operation which removes local neighborhood configurations which cannot be used in a pre-image of a given configuration. This paper presents a detailed derivation of our algorithm from first principles, and a detailed complexity and accuracy analysis is also given. In the case of time complexity, it is shown that the average case time complexity of the algorithm is \Theta(n^2), and the best and worst cases are \Omega(n) and O(n^3) respectively. This represents a vast improvement in the upper bound over current methods, without compromising average case performance.
Resumo:
This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.
Resumo:
This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.
Resumo:
A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
Resumo:
Diagnosis threat is a psychosocial factor that has been proposed to contribute to poor outcomes following mild traumatic brain injury (mTBI). This threat is thought to impair the cognitive test performance of individuals with mTBI because of negative injury stereotypes. University students (N= 45, 62.2% female) with a history of mTBI were randomly allocated to a diagnosis threat (DT, n=15), reduced threat (DT-reduced, n=15) or neutral (n=15) group. The reduced threat condition invoked a positive stereotype (i.e., that people with mTBI can perform well on cognitive tests). All participants were given neutral instructions before they completed baseline tests of: a) objective cognitive function across a number of domains; b) psychological symptoms; and, c) PCS symptoms, including self-reported cognitive and emotional difficulties. Participants then received either neutral, DT or DT-reduced instructions, before repeating the tests. Results were analyzed using separate mixed model ANOVAs; one for each dependent measure. The only significant result was for the 2 X 3 ANOVA on an objective test of attention/working memory, Digit Span, p<.05, such that the DT-reduced group performed better than the other groups, which were not different from each other. Although not consistent with predictions or earlier DT studies, the absence of group differences on most tests fits with several recent DT findings. The results of this study suggest that it is timely to reconsider the role of DT as a unique contributor to poor mTBI outcome.
Resumo:
This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.
Resumo:
This paper describes the results of a study designed to understand the components contributing to a participant's assessment of threatening situations in a competitive First Person Shooter (FPS) game Quake III: Arena. The analysis process described compares theoretical, questionnaire based data with that of actual game play footage and identifies how skill and experience can affect a player's ability to accurately assess threat. This research also identifies relationships between variables contributing to a participant's threat assessment process which are not usually acknowledged in game AI design. A suggestion for integrating player-like threat based decision making processes is proposed.
Resumo:
The Oceania region, which includes Australia, New Zealand, Papua New Guinea and the islands of the tropical Pacific Ocean, has historically been free from chikungunya. However, the 2011 outbreak in New Caledonia and the ongoing outbreak in Papua New Guinea have highlighted the risk to other communities in Oceania where there are competent mosquito vectors and permissive social factors and environmental conditions. In this article we discuss the threat to this region that is posed by the recent evolution of the E1:A226V mutant strains of chikungunya virus (CHIKV).
Resumo:
Determining what consequences are likely to serve as effective punishment for any given behaviour is a complex task. This chapter focuses specifically on illegal road user behaviours and the mechanisms used to punish and deter them. Traffic law enforcement has traditionally used the threat and/or receipt of legal sanctions and penalties to deter illegal and risky behaviours. This process represents the use of positive punishment, one of the key behaviour modification mechanisms. Behaviour modification principles describe four types of reinforcers: positive and negative punishments and positive and negative reinforcements. The terms ‘positive’ and ‘negative’ are not used in an evaluative sense here. Rather, they represent the presence (positive) or absence (negative) of stimuli to promote behaviour change. Punishments aim to inhibit behaviour and reinforcements aim to encourage it. This chapter describes a variety of punishments and reinforcements that have been and could be used to modify illegal road user behaviours. In doing so, it draws on several theoretical perspectives that have defined behavioural reinforcement and punishment in different ways. Historically, the main theoretical approach used to deter risky road use has been classical deterrence theory which has focussed on the perceived certainty, severity and swiftness of penalties. Stafford and Warr (1993) extended the traditional deterrence principles to include the positive reinforcement concept of punishment avoidance. Evidence of the association between punishment avoidance experiences and behaviour has been established for a number of risky road user behaviours including drink driving, unlicensed driving, and speeding. We chose a novel way of assessing punishment avoidance by specifying two sub-constructs (detection evasion and punishment evasion). Another theorist, Akers, described the idea of competing reinforcers, termed differential reinforcement, within social learning theory (1977). Differential reinforcement describes a balance of reinforcements and punishments as influential on behaviour. This chapter describes comprehensive way of conceptualising a broad range of reinforcement and punishment concepts, consistent with Akers’ differential reinforcement concept, within a behaviour modification framework that incorporates deterrence principles. The efficacy of three theoretical perspectives to explain self-reported speeding among a sample of 833 Australian car drivers was examined. Results demonstrated that a broad range of variables predicted speeding including personal experiences of evading detection and punishment for speeding, intrinsic sensations, practical benefits expected from speeding, and an absence of punishing effects from being caught. Not surprisingly, being younger was also significantly related to more frequent speeding, although in a regression analysis, gender did not retain a significant influence once all punishment and reinforcement variables were entered. The implications for speed management, as well as road user behaviour modification more generally, are discussed in light of these findings. Overall, the findings reported in this chapter suggest that a more comprehensive approach is required to manage the behaviour of road users which does not rely solely on traditional legal penalties and sanctions.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
OBJECTIVES: To provide an overview of 1) traditional methods of skin cancer early detection, 2) current technologies for skin cancer detection, and 3) evolving practice models of early detection. DATA SOURCES: Peer-reviewed databased articles and reviews, scholarly texts, and Web-based resources. CONCLUSION: Early detection of skin cancer through established methods or newer technologies is critical for reducing both skin cancer mortality and the overall skin cancer burden. IMPLICATIONS FOR NURSING PRACTICE: A basic knowledge of recommended skin examination guidelines and risk factors for skin cancer, traditional methods to further examine lesions that are suspicious for skin cancer and evolving detection technologies can guide patient education and skin inspection decisions.
Resumo:
To the editor...
Resumo:
This thesis investigates condition monitoring (CM) of diesel engines using acoustic emission (AE) techniques. The AE signals recorded from a small size diesel engine are mixtures of multiple sources from multiple cylinders. Thus, it is difficult to interpret the information conveyed in the signals for CM purposes. This thesis develops a series of practical signal processing techniques to overcome this problem. Various experimental studies conducted to assess the CM capabilities of AE analysis for diesel engines. A series of modified signal processing techniques were proposed. These techniques showed promising results of capability for CM of multiple cylinders diesel engine using multiple AE sensors.
Resumo:
The ability to automate forced landings in an emergency such as engine failure is an essential ability to improve the safety of Unmanned Aerial Vehicles operating in General Aviation airspace. By using active vision to detect safe landing zones below the aircraft, the reliability and safety of such systems is vastly improved by gathering up-to-the-minute information about the ground environment. This paper presents the Site Detection System, a methodology utilising a downward facing camera to analyse the ground environment in both 2D and 3D, detect safe landing sites and characterise them according to size, shape, slope and nearby obstacles. A methodology is presented showing the fusion of landing site detection from 2D imagery with a coarse Digital Elevation Map and dense 3D reconstructions using INS-aided Structure-from-Motion to improve accuracy. Results are presented from an experimental flight showing the precision/recall of landing sites in comparison to a hand-classified ground truth, and improved performance with the integration of 3D analysis from visual Structure-from-Motion.