381 resultados para Rotational motion (Rigid dynamics)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical descriptions of birth–death–movement processes are often calibrated to measurements from cell biology experiments to quantify tissue growth rates. Here we describe and analyze a discrete model of a birth–death-movement process applied to a typical two–dimensional cell biology experiment. We present three different descriptions of the system: (i) a standard mean–field description which neglects correlation effects and clustering; (ii) a moment dynamics description which approximately incorporates correlation and clustering effects, and; (iii) averaged data from repeated discrete simulations which directly incorporates correlation and clustering effects. Comparing these three descriptions indicates that the mean–field and moment dynamics approaches are valid only for certain parameter regimes, and that both these descriptions fail to make accurate predictions of the system for sufficiently fast birth and death rates where the effects of spatial correlations and clustering are sufficiently strong. Without any method to distinguish between the parameter regimes where these three descriptions are valid, it is possible that either the mean–field or moment dynamics model could be calibrated to experimental data under inappropriate conditions, leading to errors in parameter estimation. In this work we demonstrate that a simple measurement of agent clustering and correlation, based on coordination number data, provides an indirect measure of agent correlation and clustering effects, and can therefore be used to make a distinction between the validity of the different descriptions of the birth–death–movement process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present key ideas for an ecological dynamics approach to learning that reveal the importance of learner–environment interactions to frame outdoor experiential learning.We propose that ecological dynamics provides a useful framework for understanding the interacting constraints of the learning process and for designing learning opportunities in outdoor experiential learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an innovative and practical approach to controlling heave motion in the presence of acute stochastic atmospheric disturbances during landing operations of an Unmanned Autonomous Helicopter (UAH). A heave motion model of an UAH is constructed for the purpose of capturing dynamic variations of thrust due to horizontal wind gusts. Additionally, through construction of an effective observer to estimate magnitudes of random gusts, a promising and feasible feedback-feedforward PD controller is developed, based on available measurements from onboard equipment. The controller dynamically and synchronously compensates for aerodynamic variations of heave motion resulting from gust influence, to increase the disturbance-attenuation ability of the UAH in a windy environment. Simulation results justify the reliability and efficiency of the suggested gust observer to estimate gust levels when applied to the heave motion model of a small unmanned helicopter, and verify suitability of the recommended control strategy to realistic environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes how ecological dynamics, a theory focusing on the performer-environment relationship, provides a basis for understanding skill acquisition in sport. From this perspective, learners are conceptualized as complex, neurobiological systems in which inherent self-organisation tendencies support the emergence of adaptive behaviours under a range of interacting task and environmental constraints. Intentions, perceptions and actions are viewed as intertwined processes which underpin functional movement solutions assembled by each learner during skill acquisition. These ideas suggest that skill acquisition programmes need to sample information from the performance environment to guide behaviour in practice tasks. Skill acquisition task protocols should allow performers to use movement variability to explore and create opportunities for action, rather than constraining them to passively receiving information. This conceptualisation also needs to characterize the design of talent evaluation tests, which need to faithfully represent the perception-action relationships in the performance environment. Since the dynamic nature of changing task constraints in sports cannot be predicted over longer timescales, an implication is that talent programmes should focus on developing performance expertise in each individual, rather than over-relying on identification of expert performers at specific points in time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-altitude aircraft inspection of powerlines, or other linear infrastructure networks, is emerging as an important application requiring specialised control technologies. Despite some recent advances in automated control related to this application, control of the underactuated aircraft vertical dynamics has not been completely achieved, especially in the presence of thermal disturbances. Rejection of thermal disturbances represents a key challenge to the control of inspection aircraft due to the underactuated nature of the dynamics and specified speed, altitude, and pitch constraints. This paper proposes a new vertical controller consisting of a backstepping elevator controller with feedforward-feedback throttle controller. The performance of our proposed approach is evaluated against two existing candidate controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-segment foot model was used to develop an accurate and reliable kinematic model to describe in-shoe foot kinematics during gait.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow-balancing Starling response is diminished in both ventricles. The reliability of sensor and sensor-less based control systems which aim to control VAD flow based on preload have limitations and thus an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a compliant inflow cannula could potentially be used as a passive control system to prevent suction events in rotary left, right and biventricular support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the movie industry, the extraordinarily successful theatrical performance of certain films is largely attributed to buzz. Despite longstanding commentary about the role of buzz in successful movie marketing and the belief that it accelerates new product diffusion, limited scholarly evidence exists to support these assertions. This is primarily due to the lack of conceptual distinction of buzz from word-of-mouth, which is often used as the main basis for conceptualising buzz. However, word-of-mouth does not fully explain the buzz surrounding films such as 'Gone With The Wind', 'The Dark Knight' and 'Avatar'. Informed by valuable insights from key experts who have launched some of the most successful movies in box office history, as well as a range of moviegoers, this thesis developed a deeper understanding of what buzz is and how it is created. This thesis concludes that buzz is not the same as word-of-mouth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organ motion as a result of respiration is an important field of research for medical physics. Knowledge of magnitude and direction of this motion is necessary to allow for more accurate radiotherapy treatment planning. This will result in higher doses to the tumour whilst sparing healthy tissue. This project involved human trials, where the radiation therapy patient's kidneys were CT scanned under three different conditions; whilst free breathing (FB), breath-hold at normal tidal inspiration (BHIN), and breath-hold at normal tidal expiration (BHEX). The magnitude of motion was measured by recording the outline of the kidney from a Beam's Eye View (BEV). The centre of mass of this 2D shape was calculated for each set using "ImageJ" software and the magnitude of movement determined from the change in the centroid's coordinates between the BHIN and BHEX scans. The movement ranged from, for the left and right kidneys, 4-46mm and 2-44mm in the superior/inferior (axial) plane, 1-21mm and 2- 16mm in the anterior/posterior (coronal) plane, and 0-6mm and 0-8mm in the lateral/medial (sagittal) plane. From exhale to inhale, the kidneys tended to move inferiorly, anteriorly and laterally. A standard radiotherapy plan, designed to treat the para-aortics with opposed lateral fields was performed on the free breathing (planning) CT set. The field size and arrangement was set up using the same parameters for each subject. The prescription was to deliver 45 Gray in 25 fractions. This field arrangement and prescription was then copied over to the breath hold CT sets, and the dosimetric differences were compared using Dose Volume Histograms (DVH). The point of comparison for the three sets was recorded as the percentage volume of kidney receiving less than or equal to 10 Gray. The QUASAR respiratory motion phantom was used with the range of motion determined from the human study. The phantom was imaged, planned and treated with a linear accelerator with dose determined by film. The effect of the motion was measured by the change in the penumbra of the film and compared to the penumbra from the treatment planning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The management of unruptured aneurysms is controversial with the decision to treat influenced by aneurysm characteristics including size and morphology. Aneurysmal bleb formation is thought to be associated with an increased risk of rupture. Objective To correlate computational fluid dynamic (CFD) indices with bleb formation. Methods Anatomical models were constructed from three-dimensional rotational angiogram (3DRA) data in 27 patients with cerebral aneurysms harbouring single blebs. Additional models representing the aneurysm before bleb formation were constructed by digitally removing the bleb. We characterised haemodynamic features of models both with and without the bleb using CFDs. Flow structure, wall shear stress (WSS), pressure and oscillatory shear index (OSI) were analysed. Results There was a statistically significant association between bleb location at or adjacent to the point of maximal WSS (74.1%, p=0.019), irrespective of rupture status. Aneurysmal blebs were related to the inflow or outflow jet in 88.9% of cases (p<0.001) whilst 11.1% were unrelated. Maximal wall pressure and OSI were not significantly related to bleb location. The bleb region attained a lower WSS following its formation in 96.3% of cases (p<0.001) and was also lower than the average aneurysm WSS in 86% of cases (p<0.001). Conclusion Cerebral aneurysm blebs generally form at or adjacent to the point of maximal WSS and are aligned with major flow structures. Wall pressure and OSI do not contribute to determining bleb location. The measurement of WSS using CFD models may potentially predict bleb formation and thus improve the assessment of rupture risk in unruptured aneurysms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-to-cell adhesion is an important aspect of malignant spreading that is often observed in images from the experimental cell biology literature. Since cell-to-cell adhesion plays an important role in controlling the movement of individual malignant cells, it is likely that cell-to-cell adhesion also influences the spatial spreading of populations of such cells. Therefore, it is important for us to develop biologically realistic simulation tools that can mimic the key features of such collective spreading processes to improve our understanding of how cell-to-cell adhesion influences the spreading of cell populations. Previous models of collective cell spreading with adhesion have used lattice-based random walk frameworks which may lead to unrealistic results, since the agents in the random walk simulations always move across an artificial underlying lattice structure. This is particularly problematic in high-density regions where it is clear that agents in the random walk align along the underlying lattice, whereas no such regular alignment is ever observed experimentally. To address these limitations, we present a lattice-free model of collective cell migration that explicitly incorporates crowding and adhesion. We derive a partial differential equation description of the discrete process and show that averaged simulation results compare very well with numerical solutions of the partial differential equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the dynamic behaviour of relative prices across seven Australian cities by applying panel unit root test procedures with structural breaks to quarterly consumer price index data for 1972 Q1–2011 Q4. We find overwhelming evidence of convergence in city relative prices. Three common structural breaks are endogenously determined at 1985, 1995, and 2007. Further, correcting for two potential biases, namely Nickell bias and time aggregation bias, we obtain half-life estimates of 2.3–3.8 quarters that are much shorter than those reported by previous research. Thus, we conclude that both structural breaks and bias corrections are important to obtain shorter half-life estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural Dynamics is the study of the response of structures to dynamic or time varying loads. This topic has emerged to be one of importance to all structural engineers due to three important issues with structural engineering in the new millennium. These are: (1) vibration and problems in slender structures that have emerged due to new material technology and aesthetic requirements, (ii) ageing structures such as bridges whoese health needs to be monitored and appropriate retrofitting carried out to prevent failure and (iii) increased vulnerability of structures to random loads such as seismic, impact and blast loads. Knowledge of structural dynamics is necessary to address these issues and their consequences. During the past two decades, research in structural dynamics has generated considerable amount of new information to address these issues. This new knowledge is not readily made available to practicing engineers and very little or none of it enters the classrooms. There is no universal emphasis on including structural dynamics and their recently generated new knowledge into the civil/structural curriculum. This paper argues for the need to include structural dynamics into the syllabus of all civil engineering courses especially those having a first or second major in structural engineering. This will enable our future structural engineers to design and maintain safe and efficient structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.