286 resultados para Machine vision and image processing
Resumo:
Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.
Resumo:
Using cameras onboard a robot for detecting a coloured stationary target outdoors is a difficult task. Apart from the complexity of separating the target from the background scenery over different ranges, there are also the inconsistencies with direct and reflected illumination from the sun,clouds, moving and stationary objects. They can vary both the illumination on the target and its colour as perceived by the camera. In this paper, we analyse the effect of environment conditions, range to target, camera settings and image processing on the reported colours of various targets. The analysis indicates the colour space and camera configuration that provide the most consistent colour values over varying environment conditions and ranges. This information is used to develop a detection system that provides range and bearing to detected targets. The system is evaluated over various lighting conditions from bright sunlight, shadows and overcast days and demonstrates robust performance. The accuracy of the system is compared against a laser beacon detector with preliminary results indicating it to be a valuable asset for long-range coloured target detection.
Resumo:
This proposal describes the innovative and competitive lunar payload solution developed at the Queensland University of Technology (QUT)–the LunaRoo: a hopping robot designed to exploit the Moon's lower gravity to leap up to 20m above the surface. It is compact enough to fit within a 10cm cube, whilst providing unique observation and mission capabilities by creating imagery during the hop. This first section is deliberately kept short and concise for web submission; additional information can be found in the second chapter.
Resumo:
Over the past several decades there has been a sharp increase in the number of studies focused on the relationship between vision and driving. The intensified attention to this topic has most likely been stimulated by the lack of an evidence basis for determining vision standards for driving licensure and a poor understanding about how vision impairment impacts driver safety and performance. Clinicians depend on the literature on vision and driving to advise visually impaired patients appropriately about driving fitness. Policy makers also depend on the scientific literature in order to develop guidelines that are evidence-based and are thus fair to persons who are visually impaired. Thus it is important for clinicians and policy makers alike to understand how various study designs and measurement methods should be interpreted so that the conclusions and recommendations they make are not overly broad, too narrowly constrained, or even misguided. We offer a methodological framework to guide interpretations of studies on vision and driving that can also serve as a heuristic for researchers in the area. Here, we discuss research designs and general measurement methods for the study of vision as they relate to driver safety, driver performance, and driver-centered (self-reported) outcomes.
Resumo:
Object detection is a fundamental task in many computer vision applications, therefore the importance of evaluating the quality of object detection is well acknowledged in this domain. This process gives insight into the capabilities of methods in handling environmental changes. In this paper, a new method for object detection is introduced that combines the Selective Search and EdgeBoxes. We tested these three methods under environmental variations. Our experiments demonstrate the outperformance of the combination method under illumination and view point variations.
Resumo:
As critical infrastructure such as transportation hubs continue to grow in complexity, greater importance is placed on monitoring these facilities to ensure their secure and efficient operation. In order to achieve these goals, technology continues to evolve in response to the needs of various infrastructure. To date, however, the focus of technology for surveillance has been primarily concerned with security, and little attention has been placed on assisting operations and monitoring performance in real-time. Consequently, solutions have emerged to provide real-time measurements of queues and crowding in spaces, but have been installed as system add-ons (rather than making better use of existing infrastructure), resulting in expensive infrastructure outlay for the owner/operator, and an overload of surveillance systems which in itself creates further complexity. Given many critical infrastructure already have camera networks installed, it is much more desirable to better utilise these networks to address operational monitoring as well as security needs. Recently, a growing number of approaches have been proposed to monitor operational aspects such as pedestrian throughput, crowd size and dwell times. In this paper, we explore how these techniques relate to and complement the more commonly seen security analytics, and demonstrate the value that can be added by operational analytics by demonstrating their performance on airport surveillance data. We explore how multiple analytics and systems can be combined to better leverage the large amount of data that is available, and we discuss the applicability and resulting benefits of the proposed framework for the ongoing operation of airports and airport networks.
Resumo:
Introduction. The venous drainage system within vertebral bodies (VBs) has been well documented previously in cadaveric specimens. Advances in 3D imaging and image processing now allow for in vivo quantification of larger venous vessels, such as the basivertebral vein. Differences between healthy and scoliotic VB veins can therefore be investigated. Methods. 20 healthy adolescent controls and 21 AIS patients were recruited (with ethics approval) to undergo 3D MRI, using a 3 Tesla, T1-weighted 3D gradient echo sequence, resulting in 512 slices across the thoraco-lumbar spine, with a voxel size of 0.5x0.5x0.5mm. Using Amira Filament Editor, five transverse slices through the VB were examined simultaneously and the resulting observable vascular network traced. Each VB was assessed, and a vascular network recorded when observable. A local coordinate system was created in the centre of each VB and the vascular networks aligned to this. The length of the vascular network on the left and right sides (with a small central region) of the VB was calculated, and the spatial patterning of the networks assessed level-by-level within each subject. Results. An average of 6 (range 4-10) vascular networks, consistent with descriptions of the basivertebral vein, were identifiable within each subject, most commonly between T10-L1. Differences were seen in the left/right distribution of vessels in the control and AIS subjects. Healthy controls saw a percentage distribution of 29:18:53 across the left:centre:right regions respectively, whereas the AIS subjects had a slightly shifted distribution of 33:25:42. The control group showed consistent spatial patterning of the vascular networks across most levels, but this was not seen in the AIS group. Conclusion. Observation and quantification of the basivertebral vein in vivo is possible using 3D MRI. The AIS group lacked the spatial pattern repetition seen in the control group and minor differences were seen in the left/right distribution of vessels.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
Bioacoustic data can be used for monitoring animal species diversity. The deployment of acoustic sensors enables acoustic monitoring at large temporal and spatial scales. We describe a content-based birdcall retrieval algorithm for the exploration of large data bases of acoustic recordings. In the algorithm, an event-based searching scheme and compact features are developed. In detail, ridge events are detected from audio files using event detection on spectral ridges. Then event alignment is used to search through audio files to locate candidate instances. A similarity measure is then applied to dimension-reduced spectral ridge feature vectors. The event-based searching method processes a smaller list of instances for faster retrieval. The experimental results demonstrate that our features achieve better success rate than existing methods and the feature dimension is greatly reduced.
Resumo:
The world is rich with information such as signage and maps to assist humans to navigate. We present a method to extract topological spatial information from a generic bitmap floor plan and build a topometric graph that can be used by a mobile robot for tasks such as path planning and guided exploration. The algorithm first detects and extracts text in an image of the floor plan. Using the locations of the extracted text, flood fill is used to find the rooms and hallways. Doors are found by matching SURF features and these form the connections between rooms, which are the edges of the topological graph. Our system is able to automatically detect doors and differentiate between hallways and rooms, which is important for effective navigation. We show that our method can extract a topometric graph from a floor plan and is robust against ambiguous cases most commonly seen in floor plans including elevators and stairwells.
Resumo:
Domain-invariant representations are key to addressing the domain shift problem where the training and test exam- ples follow different distributions. Existing techniques that have attempted to match the distributions of the source and target domains typically compare these distributions in the original feature space. This space, however, may not be di- rectly suitable for such a comparison, since some of the fea- tures may have been distorted by the domain shift, or may be domain specific. In this paper, we introduce a Domain Invariant Projection approach: An unsupervised domain adaptation method that overcomes this issue by extracting the information that is invariant across the source and tar- get domains. More specifically, we learn a projection of the data to a low-dimensional latent space where the distance between the empirical distributions of the source and target examples is minimized. We demonstrate the effectiveness of our approach on the task of visual object recognition and show that it outperforms state-of-the-art methods on a stan- dard domain adaptation benchmark dataset
Resumo:
Deep convolutional network models have dominated recent work in human action recognition as well as image classification. However, these methods are often unduly influenced by the image background, learning and exploiting the presence of cues in typical computer vision datasets. For unbiased robotics applications, the degree of variation and novelty in action backgrounds is far greater than in computer vision datasets. To address this challenge, we propose an “action region proposal” method that, informed by optical flow, extracts image regions likely to contain actions for input into the network both during training and testing. In a range of experiments, we demonstrate that manually segmenting the background is not enough; but through active action region proposals during training and testing, state-of-the-art or better performance can be achieved on individual spatial and temporal video components. Finally, we show by focusing attention through action region proposals, we can further improve upon the existing state-of-the-art in spatio-temporally fused action recognition performance.
Resumo:
In this paper we investigate the effectiveness of class specific sparse codes in the context of discriminative action classification. The bag-of-words representation is widely used in activity recognition to encode features, and although it yields state-of-the art performance with several feature descriptors it still suffers from large quantization errors and reduces the overall performance. Recently proposed sparse representation methods have been shown to effectively represent features as a linear combination of an over complete dictionary by minimizing the reconstruction error. In contrast to most of the sparse representation methods which focus on Sparse-Reconstruction based Classification (SRC), this paper focuses on a discriminative classification using a SVM by constructing class-specific sparse codes for motion and appearance separately. Experimental results demonstrates that separate motion and appearance specific sparse coefficients provide the most effective and discriminative representation for each class compared to a single class-specific sparse coefficients.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.