387 resultados para Civil engineering work
Resumo:
The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.
Resumo:
Braking is a crucial driving task with a direct relationship with crash risk, as both excess and inadequate braking can lead to collisions. The objective of this study was to compare the braking profile of young drivers distracted by mobile phone conversations to non-distracted braking. In particular, the braking behaviour of drivers in response to a pedestrian entering a zebra crossing was examined using the CARRS-Q Advanced Driving Simulator. Thirty-two licensed drivers drove the simulator in three phone conditions: baseline (no phone conversation), hands-free, and handheld. In addition to driving the simulator, each participant completed questionnaires related to driver demographics, driving history, usage of mobile phones while driving, and general mobile phone usage history. The drivers were 18–26 years old and split evenly by gender. A linear mixed model analysis of braking profiles along the roadway before the pedestrian crossing revealed comparatively increased decelerations among distracted drivers, particularly during the initial 20 kph of deceleration. Drivers’ initial 20 kph deceleration time was modelled using a parametric accelerated failure time (AFT) hazard-based duration model with a Weibull distribution with clustered heterogeneity to account for the repeated measures experiment design. Factors found to significantly influence the braking task included vehicle dynamics variables like initial speed and maximum deceleration, phone condition, and driver-specific variables such as licence type, crash involvement history, and self-reported experience of using a mobile phone whilst driving. Distracted drivers on average appear to reduce the speed of their vehicle faster and more abruptly than non-distracted drivers, exhibiting excess braking comparatively and revealing perhaps risk compensation. The braking appears to be more aggressive for distracted drivers with provisional licenses compared to drivers with open licenses. Abrupt or excessive braking by distracted drivers might pose significant safety concerns to following vehicles in a traffic stream.
Resumo:
This study quantifies the motivators and barriers to bikeshare program usage in Australia. An online survey was administered to a sample of annual members of Australia’s two bikeshare programs based in Brisbane and Melbourne, to assess motivations for joining the schemes. Non-members of the programs were also sampled in order to identify current barriers to joining bikeshare. Spatial analysis from Brisbane revealed residential and work locations of non-members were more geographically dispersed than for bikeshare members. An analysis of bikeshare usage in Melbourne showed a strong relationship between docking stations in areas with relatively less accessible public transit opportunities. The most influential barriers to bikeshare use related to motorized travel being too convenient and docking stations not being sufficiently close to home, work and other frequented destinations. The findings suggest that bikeshare programs may attract increased membership by ensuring travel times are competitive with motorized travel, for example through efficient bicycle routing and priority progression and, by expanding docking station locations, and by increasing the level of convenience associated with scheme use. Convenience considerations may include strategic location of docking stations, ease of signing up and integration with public transport.
Resumo:
The introduction of Building Information Modelling (BIM) to the design, construction and operation of buildings is changing the way that the building construction industry works. BIM involves the development of a full 3D virtual model of a building which not only contains the 3D information necessary to show the building as it will appear, but also contains significant additional data about each component in the building. BIM represents both physical and virtual objects in a building. This includes the rooms and spaces within and around the building. The additional data stored on each part of the building can support building maintenance opera- tions and, more importantly from the perspective of this paper, support the generation and running of simula- tions of the operation of the building and behaviour of people within it under both normal and emergency scenarios. The initial discussion is around the use of BIM to support the design of resilient buildings which references the various codes and standards that define current best practice. The remainder of the discussion uses various recent events as the basis for discussion on how BIM could have been used to support rapid recovery and re- building.
Resumo:
Portable, water filled road safety barriers are used to provide protection and reduce the potential hazard due to errant vehicles in areas where the road conditions change frequently (e.g. near road work sites). As part of an effort to reduce excessive working widths typical of these systems, a study was conducted to assess the effectiveness of introducing polymeric foam filled panels into the design. Surrogate impact tests of a design typical of such as barrier system were conducted utilising a pneumatically powered horizontal impact testing machine up to impact energies of 7.40 kJ. Results of these tests are utilised to examine the barrier behaviour, in addition to being used to validate a couple FE/SPH model of the barrier system. Once validated, the FE/SPH model it utilised as the basis for a parametric study into the efficacy and effects of the inclusion of polymeric foam filled panels on the performance of portable water filled road safety barriers. It was found that extruded polystyrene foam functioned well, with a greater thickness of the foam panel significantly reducing the impacting body velocity as the barrier began to translate.
Resumo:
A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.
Resumo:
Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns at ambient temperature. This research has investigated the accuracy of using current ambient temperature design rules in Australia/New Zealand (AS/NZS 4600), American (AISI S100) and European (Eurocode 3 Part 1.3) standards in determining the flexural–torsional buckling capacities of cold-formed steel columns at uniform elevated temperatures using appropriately reduced mechanical properties. It was found that these design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural torsional buckling at elevated temperatures. However, for fixed ended columns with warping fixity undergoing flexural–torsional buckling, the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore recommended the use of improved design rules developed for ambient temperature conditions to predict the axial compression capacities of fixed ended columns subject to flexural–torsional buckling at elevated temperatures within AS/NZS 4600 and AISI S100 design provisions. The accuracy of the proposed fire design rules was verified using finite element analysis and test results of cold-formed lipped channel columns at elevated temperatures except for low strength steel columns with intermediate slenderness whose behaviour was influenced by the increased nonlinearity in the stress–strain curves at elevated temperatures. Further research is required to include these effects within AS/NZS 4600 and AISI S100 design rules. However, Eurocode 3 Part 1.3 design rules can be used for this purpose by using suitable buckling curves as recommended in this paper.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.
Resumo:
Portable water-filled barriers (PWFB) are roadside structures used to enhance safety at roadside work-zones. Ideally, a PWFB system is expected to protect persons and objects behind it and redirect the errant vehicle. The performance criteria of a road safety barrier system are (i) redirection of the vehicle after impact and (ii) lateral deflection within allowable limits. Since its inception, the PWFB has received criticism due to its underperformance compared to the heavier portable concrete barrier. A new generation composite high energy absorbing road safety barrier was recently developed by the authors.
Resumo:
Gross pollutant traps (GPT) are designed to capture and retain visible street waste, such as anthropogenic litter and organic matter. Blocked screens, low/high downstream tidal waters and flows operating above/below the intended design limits can hamper the operations of a stormwater GPT. Under these adverse operational conditions, a recently developed GPT was evaluated. Capture and retention experiments were conducted on a 50% scale model with partially and fully blocked screens, placed inside a hydraulic flume. Flows were established through the model via an upstream channel-inlet configuration. Floatable, partially buoyant, neutrally buoyant and sinkable spheres were released into the GPT and monitored at the outlet. These experiments were repeated with a pipe-inlet configured GPT. The key findings from the experiments were of practical significance to the design, operation and maintenance of GPTs. These involved an optimum range of screen blockages and a potentially improved inlet design for efficient gross pollutant capture/retention operations. For example, the outlet data showed that the capture and retention efficiency deteriorated rapidly when the screens were fully blocked. The low pressure drop across the retaining screens and the reduced inlet flow velocities were either insufficient to mobilise the gross pollutants, or the GPT became congested.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Public acceptance is consistently listed as having an enormous impact on the implementation and success of a congestion charge scheme. This paper investigates public acceptance of such a scheme in Australia. Surveys were conducted in Brisbane and Melbourne, the two fastest growing Australian cities. Using an ordered logit modeling approach, the survey data including stated preferences were analyzed to pinpoint the important factors influencing people’s attitudes to a congestion charge and, in turn, to their transport mode choices. To accommodate the nature of, and to account for the resulting heterogeneity of the panel data, random effects were considered in the models. As expected, this study found that the amount of the congestion charge and the financial benefits of implementing it have a significant influence on respondents’ support for the charge and on the likelihood of their taking a bus to city areas. However, respondents’ current primary transport mode for travelling to the city areas has a more pronounced impact. Meanwhile, respondents’ perceptions of the congestion charge’s role in protecting the environment by reducing vehicle emissions, and of the extent to which the charge would mean that they travelled less frequently to the city for shopping or entertainment, also have a significant impact on their level of support for its implementation. We also found and explained notable differences across two cities. Finally, findings from this study have been fully discussed in relation to the literature.
Resumo:
This study investigated the durability properties of concrete containing nano-silica at dosages of 0.3% and 0.9%, respectively. Due to the nano-filler effect and the pozzolanic reaction, the microstructure became more homogeneous and less porous, especially at the interfacial transition zone (ITZ), which led to reduced permeability. Tests on the durability properties verified the beneficial effects of nano-silica. The channels for harmful agents through the cement composites were partially filled and blocked. The pore size distribution also indicated that the large capillary pores were refined by the nano-silica, due to the combined contribution of the nano-filler effect and the pozzolanic reaction.
Resumo:
This study examines the association between urban form and walking for transport in Brisbane, Australia based on both panel and cross-sectional data. Cross-sectional data are used to determine whether urban form was associated with walking for transport in 2011. Panel data are used to evaluate whether changes in the built environment altered walking behaviour between 2009 and 2011. Results from the cross-sectional data suggest that individuals are significantly more likely to be walkers if they live in an area with a well-connected street network and an accessible train station. The longitudinal analysis confirms these relationships; there also was however, a significant impact of travel attitudes and perceptions on walking behaviour. The findings suggest that the built environment continues to be an important factor to encourage walking; however, interventions are also required to change social norms in order to increase the receptiveness for and participation in walking.
Resumo:
As governments seek to transition to more efficient vehicle fleets, one strategy has been to incentivize ‘green’ vehicle choice by exempting some of these vehicles from road user charges. As an example, to stimulate sales of Energy-Efficient Vehicles (EEVs) in Sweden, some of these automobiles were exempted from Stockholm’s congestion tax. In this paper the effect this policy had on the demand for new, privately-owned, exempt EEVs is assessed by first estimating a model of vehicle choice and then by applying this model to simulate vehicle alternative market shares under different policy scenarios. The database used to calibrate the model includes owner-specific demographics merged with vehicle registry data for all new private vehicles registered in Stockholm County during 2008. Characteristics of individuals with a higher propensity to purchase an exempt EEV were identified. The most significant factors included intra-cordon residency (positive), distance from home to the CBD (negative), and commuting across the cordon (positive). By calculating vehicle shares from the vehicle choice model and then comparing these estimates to a simulated scenario where the congestion tax exemption was inactive, the exemption was estimated to have substantially increased the share of newly purchased, private, exempt EEVs in Stockholm by 1.8% (+/- 0.3%; 95% C.I.) to a total share of 18.8%. This amounts to an estimated 10.7% increase in private, exempt EEV purchases during 2008 i.e. 519 privately owned, exempt EEVs.