300 resultados para sugar transport
Resumo:
There is a current lack of understanding regarding the use of unregistered vehicles on public roads and road-related areas, and the links between the driving of unregistered vehicles and a range of dangerous driving behaviours. This report documents the findings of data analysis conducted to investigate the links between unlicensed driving and the driving of unregistered vehicles, and is an important initial undertaking into understanding these behaviours. This report examines de-identified data from two sources: crash data; and offence data. The data was extracted from the Queensland Department of Transport and Main Roads (TMR) databases and covered the period from 2003 to 2008.
Resumo:
Improving safety at railway level crossings is an important issue for the Australian transport system. Governments, the rail industry and road organisations have tried a variety of countermeasures for many years to improve railway level crossing safety. New types of Intelligent Transport System (ITS) interventions are now emerging due to the availability and the affordability of technology. These interventions target both actively and passively protected railway level crossings and attempt to address drivers’ errors at railway crossings, which are mainly a failure to detect the crossing or the train and misjudgement of the train approach speed and distance. This study aims to assess the effectiveness of three emerging ITS that the rail industry considers implementing in Australia: a visual in-vehicle ITS, an audio in-vehicle ITS, as well as an on-road flashing beacons intervention. The evaluation was conducted on an advanced driving simulator with 20 participants per trialled technology, each participant driving once without any technology and once with one of the ITS interventions. Every participant drove through a range of active and passive crossings with and without trains approaching. Their speed approach of the crossing, head movements and stopping compliance were measured. Results showed that driver behaviour was changed with the three ITS interventions at passive crossings, while limited effects were found at active crossings, even with reduced visibility. The on-road intervention trialled was unsuccessful in improving driver behaviour; the audio and visual ITS improved driver behaviour when a train was approaching. A trend toward worsening driver behaviour with the visual ITS was observed when no trains were approaching. This trend was not observed for the audio ITS intervention, which appears to be the ITS intervention with the highest potential for improving safety at passive crossings.
Resumo:
Pilot and industrial scale dilute acid pretreatment data can be difficult to obtain due to the significant infrastructure investment required. Consequently, models of dilute acid pretreatment by necessity use laboratory scale data to determine kinetic parameters and make predictions about optimal pretreatment conditions at larger scales. In order for these recommendations to be meaningful, the ability of laboratory scale models to predict pilot and industrial scale yields must be investigated. A mathematical model of the dilute acid pretreatment of sugarcane bagasse has previously been developed by the authors. This model was able to successfully reproduce the experimental yields of xylose and short chain xylooligomers obtained at the laboratory scale. In this paper, the ability of the model to reproduce pilot scale yield and composition data is examined. It was found that in general the model over predicted the pilot scale reactor yields by a significant margin. Models that appear very promising at the laboratory scale may have limitations when predicting yields on a pilot or industrial scale. It is difficult to comment whether there are any consistent trends in optimal operating conditions between reactor scale and laboratory scale hydrolysis due to the limited reactor datasets available. Further investigation is needed to determine whether the model has some efficacy when the kinetic parameters are re-evaluated by parameter fitting to reactor scale data, however, this requires the compilation of larger datasets. Alternatively, laboratory scale mathematical models may have enhanced utility for predicting larger scale reactor performance if bulk mass transport and fluid flow considerations are incorporated into the fibre scale equations. This work reinforces the need for appropriate attention to be paid to pilot scale experimental development when moving from laboratory to pilot and industrial scales for new technologies.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
To deliver tangible sustainability outcomes, the infrastructure sector of the construction industry needs to build capacities for the creation, application and management of ever increasing knowledge. This paper intends to establish the importance and key issues of promoting sustainability through knowledge management (KM). It presents a new conceptual framework for managing sustainability knowledge to raise the awareness and direct future research in the field of transport infrastructure, one of the fast growing sectors in Australia. A holistic KM approach is adopted in this research to consider the potential to “deliver the right information to the right person at the right time” in the context of sustainable development of infrastructure. A questionnaire survey among practitioners across the nation confirmed the necessity and identified priority issues of managing knowledge for sustainability. During infrastructure development, KM can help build much needed industry consensus, develop capacity, communicate decisions, and promote specific measures for the pursuit of sustainability. Six essential elements of the KM approach and their priority issues informed the establishment of a conceptual KM framework. The transport infrastructure sector has come to realise that development must not come at the expense of environmental and social objectives. In practice however, it is facing extensive challenges to deliver what has been promised in the sustainability agenda. This research demonstrates the importance of managing sustainability knowledge, integration of various stakeholders, facilitation of plans and actions and delivery of tangible benefits in real projects, as a positive step towards meeting these challenges.
Resumo:
The Queensland Transport Industry Workplace Health Intervention project was a Participatory Action Research (PAR) project to investigate the effectiveness of workplace-based nutrition and physical activity health promotion interventions for truck drivers in transport industry workplaces in south-east Queensland. The project was conducted by a research team at the Queensland University of Technology (QUT), and was funded by the Queensland Government under the Healthier.Happier.Workplaces initiative.
Resumo:
This paper is concerned with the interfacial thermal resistance for polymer composites reinforced by various covalently functionalised graphene. By using molecular dynamics simulations, the obtained results show that the covalent functionalisation in graphene plays a significant role in reducing the graphene-paraffin interfacial thermal resistance. This reduction is dependent on the coverage and type of functional groups. Among the various functional groups, butyl is found to be the most effective in reducing the interfacial thermal resistance, followed by methyl, phenyl and formyl. The other functional groups under consideration such as carboxyl, hydroxyl and amines are found to produce negligible reduction in the interfacial thermal resistance. For multilayer graphene with a layer number up to four, the interfacial thermal resistance is insensitive to the layer number. The effects of the different functional groups and the layer number on the interfacial thermal resistance are also elaborated using the vibrational density of states of the graphene and the paraffin matrix. The present findings provide useful guidelines in the application of functionalised graphene for practical thermal management.
Resumo:
The provision of effective training of supervisors and operators is essential if sugar factories are to operate profitably and in an environmentally sustainable and safe manner. The benefits of having supervisor and operator staff with a high level of operational skills are reduced stoppages, increased recovery, improved sugar quality, reduced damage to equipment, and reduced OH&S and environmental impacts. Training of new operators and supervisors in factories has traditionally relied on on-the-job training of the new or inexperienced staff by experienced supervisors and operators, supplemented by courses conducted by contractors such as Sugar Research Institute (SRI). However there is clearly a need for staff to be able to undertake training at any time, drawing on the content of online courses as required. An improved methodology for the training of factory supervisors and operators has been developed by QUT on behalf of a syndicate of mills. The new methodology provides ‘at factory’ learning via self-paced modules. Importantly, the training resources for each module are designed to support the training programs within sugar factories, thereby establishing a benchmark for training across the sugar industry. The modules include notes, training guides and session plans, guidelines for walkthrough tours of the stations, learning activities, resources such as videos, animations, job aids and competency assessments. The materials are available on the web for registered users in Australian Mills and many activities are best undertaken online. Apart from a few interactive online resources, the materials for each module can also be downloaded. The acronym SOTrain (Supervisor and Operator Training) has been applied to the new training program.
Resumo:
Roads and road infrastructure will be faced with multiple challenges over the coming decades – challenges that in many ways bear little resemblance to those previously faced - and as such will require new approaches. The opportunity exists to transform the way road infrastructure is conceived and constructed, as a key part of the process of assisting society to respond to climate change and reduce other environmental pressures. Innovations in road construction, use and management in order to manage these changes can now be seen. Scenario planning is one tool that can take into account emerging challenges, develop or adopt new approaches, and thus help this transformation to occur. The paper explores scenario planning methodologies, global innovations and trends in road construction and maintenance and the findings from stakeholder workshops in Brisbane and Perth. It highlights key opportunities for road agencies to use scenarios to enable planning that, in the face of future uncertainties, facilitates appropriate responses.
Resumo:
Background Understanding how different socioeconomic indicators are associated with transport modes provide insight into which interventions might contribute to reducing socioeconomic inequalities in health. The purpose of this study was to examine associations between neighbourhood-level socioeconomic disadvantage, individual-level socioeconomic position (SEP) and usual transport mode. Methods This investigation included 11,036 residents from 200 neighbourhoods in Brisbane, Australia. Respondents self-reported their usual transport mode (car or motorbike, public transport, walking or cycling). Indicators for individual-level SEP were education, occupation, and household income; and neighbourhood disadvantage was measured using a census-derived index. Data were analysed using multilevel multinomial logistic regression. High SEP respondents and residents of the most advantaged neighbourhoods who used a private motor vehicle as their usual form of transport was the reference category. Results Compared with driving a motor vehicle, the odds of using public transport were higher for white collar employees (OR1.68, 95%CrI 1.41-2.01), members of lower income households (OR 1.71 95%CrI 1.25-2.30), and residents of more disadvantaged neighbourhoods (OR 1.93, 95%CrI 1.46-2.54); and lower for respondents with a certificate-level education (OR 0.60, 95%CrI 0.49-0.74) and blue collar workers (OR 0.63, 95%CrI 0.50-0.81). The odds of walking for transport were higher for the least educated (OR 1.58, 95%CrI 1.18-2.11), those not in the labour force (OR 1.94, 95%CrI 1.38-2.72), members of lower income households (OR 2.10, 95%CrI 1.23-3.64), and residents of more disadvantaged neighbourhoods (OR 2.73, 95%CrI 1.46-5.24). The odds of cycling were lower among less educated groups (OR 0.31, 95% CrI 0.19-0.48). Conclusion The relationships between socioeconomic characteristics and transport modes are complex, and provide challenges for those attempting to encourage active forms of transportation. Further work is required exploring the individual- and neighbourhood-level mechanisms behind transport mode choice, and what factors might influence individuals from different socioeconomic backgrounds to change to more active transport modes.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.
Resumo:
In this work, we have developed a new efficient hole transport material (HTM) composite based on poly(3- hexylthiophene) (P3HT) and bamboo-structured carbon nanotubes (BCNs) for CH3NH3PbI3 (MAPbI3) based perovskite solar cells. Compared to pristine P3HT, it is found that the crystallinity of P3HT was significantly improved by addition of BCNs, which led to over one order of magnitude higher conductivity for the composite containing 1–2 wt% BCNs in P3HT. In the meantime, the interfacial charge transfer between the MAPbI3 light absorbing layer and the HTM composite layer based on P3HT/BCNs was two-fold faster than pristine P3HT. More importantly, the HTM film with a superior morphological structure consisting of closely compact large grains was achieved with the composite containing 1 wt% BCNs in P3HT. The study by electrochemical impedance spectroscopy has confirmed that the electron recombination in the solar cells was reduced nearly ten-fold with the addition of 1 wt% carbon nanotubes in the HTM composite. Owing to the superior HTM film morphology and the significantly reduced charge recombination, the energy conversion efficiency of the perovskite solar cells increased from 3.6% for pristine P3HT to 8.3% for P3HT/(1 wt% BCNs) with a significantly enhanced open circuit voltage (Voc) and fill factor (FF). The findings of this work are important for development of new HTM for high performance perovskite solar cells.
Resumo:
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Sugar cane biomass is one of the most viable feedstocks for the production of renewable fuels and chemicals. Therefore, processing the whole of crop (WC) (i.e., stalk and trash, instead of stalk only) will increase the amount of available biomass for this purpose. However, effective clarification of juice expressed from WC for raw sugar manufacture is a major challenge because of the amounts and types of non-sucrose impurities (e.g., polysaccharides, inorganics, proteins, etc.) present. Calcium phosphate flocs are important during sugar cane juice clarification because they are responsible for the removal of impurities. Therefore, to gain a better understanding of the role of calcium phosphate flocs during the juice clarification process,the effects of impurities on the physicochemical properties of calcium phosphate flocs were examined using small-angle laser light scattering technique, attenuated total reflectance Fourier transformed infrared spectroscopy, and X-ray powder diffraction. Results on synthetic sugar juice solutions showed that the presence of SiO2 and Na+ ions affected floc size and floc structure. Starch and phosphate ions did not affect the floc structure; however, the former reduced the floc size, whereas the latter increased the floc size. The study revealed that high levels of Na+ ions would negatively affect the clarification process the most, as they would reduce the amount of suspended particles trapped by the flocs. A complementary study on prepared WC juice using cold and cold/intermediate liming techniques was conducted. The study demonstrated that, in comparison to the one-stage (i.e., conventional) clarification process, a two-stage clarification process using cold liming removed more polysaccharides (≤19%),proteins (≤82%), phosphorus (≤53%), and SiO2 (≤23%) in WC juice but increased Ca2+ (≤136%) and sulfur (≤200%)