274 resultados para classification scheme
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.
Resumo:
Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Frogs have received increasing attention due to their effectiveness for indicating the environment change. Therefore, it is important to monitor and assess frogs. With the development of sensor techniques, large volumes of audio data (including frog calls) have been collected and need to be analysed. After transforming the audio data into its spectrogram representation using short-time Fourier transform, the visual inspection of this representation motivates us to use image processing techniques for analysing audio data. Applying acoustic event detection (AED) method to spectrograms, acoustic events are firstly detected from which ridges are extracted. Three feature sets, Mel-frequency cepstral coefficients (MFCCs), AED feature set and ridge feature set, are then used for frog call classification with a support vector machine classifier. Fifteen frog species widely spread in Queensland, Australia, are selected to evaluate the proposed method. The experimental results show that ridge feature set can achieve an average classification accuracy of 74.73% which outperforms the MFCCs (38.99%) and AED feature set (67.78%).
Resumo:
Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).
Resumo:
A review was carried out of the radiographs of twenty-five infants with birth weights under 1000 G, who survived for more than twenty-eight days; eighteen of these had enough suitable films for a survey of the progressive bone changes which occur in these infants, including estimation of humeral cortical cross-sectional area. The incidence of the changes has been assessed and a typical progression of radiographic appearances has been shown, with a suggested system of staging. All infants showed some loss of bone mineral, with frank changes of rickets occurring in forty-four percent. Aetiological factors are mainly concerned with the difficulty of supplying and ensuring absorption of sufficient bone mineral (calcium and phosphate) and vitamin D. Liver immaturity may be another factor. Disease states additional to prematurity accentuate the problem. Rib fractures occurring around 80–90 days post-nataEy commonly draw attention to the bone disorder and are probably the major clinical factor of importance; there is a high incidence of associated lung disease of uncertain pathology. Attention is drawn to possible confusion with other bone disorders in the post-natal period.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
Objective Death certificates provide an invaluable source for cancer mortality statistics; however, this value can only be realised if accurate, quantitative data can be extracted from certificates – an aim hampered by both the volume and variable nature of certificates written in natural language. This paper proposes an automatic classification system for identifying cancer related causes of death from death certificates. Methods Detailed features, including terms, n-grams and SNOMED CT concepts were extracted from a collection of 447,336 death certificates. These features were used to train Support Vector Machine classifiers (one classifier for each cancer type). The classifiers were deployed in a cascaded architecture: the first level identified the presence of cancer (i.e., binary cancer/nocancer) and the second level identified the type of cancer (according to the ICD-10 classification system). A held-out test set was used to evaluate the effectiveness of the classifiers according to precision, recall and F-measure. In addition, detailed feature analysis was performed to reveal the characteristics of a successful cancer classification model. Results The system was highly effective at identifying cancer as the underlying cause of death (F-measure 0.94). The system was also effective at determining the type of cancer for common cancers (F-measure 0.7). Rare cancers, for which there was little training data, were difficult to classify accurately (F-measure 0.12). Factors influencing performance were the amount of training data and certain ambiguous cancers (e.g., those in the stomach region). The feature analysis revealed a combination of features were important for cancer type classification, with SNOMED CT concept and oncology specific morphology features proving the most valuable. Conclusion The system proposed in this study provides automatic identification and characterisation of cancers from large collections of free-text death certificates. This allows organisations such as Cancer Registries to monitor and report on cancer mortality in a timely and accurate manner. In addition, the methods and findings are generally applicable beyond cancer classification and to other sources of medical text besides death certificates.
Resumo:
Background The purpose of this presentation is to outline the relevance of the categorization of the load regime data to assess the functional output and usage of the prosthesis of lower limb amputees. The objectives are • To highlight the need for categorisation of activities of daily living • To present a categorization of load regime applied on residuum, • To present some descriptors of the four types of activity that could be detected, • To provide an example the results for a case. Methods The load applied on the osseointegrated fixation of one transfemoral amputee was recorded using a portable kinetic system for 5 hours. The load applied on the residuum was divided in four types of activities corresponding to inactivity, stationary loading, localized locomotion and directional locomotion as detailed in previously publications. Results The periods of directional locomotion, localized locomotion, and stationary loading occurred 44%, 34%, and 22% of recording time and each accounted for 51%, 38%, and 12% of the duration of the periods of activity, respectively. The absolute maximum force during directional locomotion, localized locomotion, and stationary loading was 19%, 15%, and 8% of the body weight on the anteroposterior axis, 20%, 19%, and 12% on the mediolateral axis, and 121%, 106%, and 99% on the long axis. A total of 2,783 gait cycles were recorded. Discussion Approximately 10% more gait cycles and 50% more of the total impulse than conventional analyses were identified. The proposed categorization and apparatus have the potential to complement conventional instruments, particularly for difficult cases.
Resumo:
Background The effectiveness of exercise referral schemes (ERS) is influenced by uptake and adherence to the scheme. The identification of factors influencing low uptake and adherence could lead to the refinement of schemes to optimise investment. Objectives To quantify the levels of ERS uptake and adherence and to identify factors predictive of uptake and adherence. Methods A systematic review and meta-analysis was undertaken. MEDLINE, EMBASE, PsycINFO, Cochrane Library, ISI WOS, SPORTDiscus and ongoing trial registries were searched (to October 2009) and included study references were checked. Included studies were required to report at least one of the following: (1) a numerical measure of ERS uptake or adherence and (2) an estimate of the statistical association between participant demographic or psychosocial factors (eg, level of motivation, self-efficacy) or programme factors and uptake or adherence to ERS. Results Twenty studies met the inclusion criteria, six randomised controlled trials (RCTs) and 14 observational studies. The pooled level of uptake in ERS was 66% (95% CI 57% to 75%) across the observational studies and 81% (95% CI 68% to 94%) across the RCTs. The pooled level of ERS adherence was 49% (95% CI 40% to 59%) across the observational studies and 43% (95% CI 32% to 54%) across the RCTs. Few studies considered anything other than gender and age. Women were more likely to begin an ERS but were less likely to adhere to it than men. Older people were more likely to begin and adhere to an ERS. Limitations Substantial heterogeneity was evident across the ERS studies. Without standardised definitions, the heterogeneity may have been reflective of differences in methods of defining uptake and adherence across studies. Conclusions To enhance our understanding of the variation in uptake and adherence across ERS and how these variations might affect physical activity outcomes, future trials need to use quantitative and qualitative methods.
Resumo:
In this paper, we present the results of an exploratory study that examined the problem of automating content analysis of student online discussion transcripts. We looked at the problem of coding discussion transcripts for the levels of cognitive presence, one of the three main constructs in the Community of Inquiry (CoI) model of distance education. Using Coh-Metrix and LIWC features, together with a set of custom features developed to capture discussion context, we developed a random forest classification system that achieved 70.3% classification accuracy and 0.63 Cohen's kappa, which is significantly higher than values reported in the previous studies. Besides improvement in classification accuracy, the developed system is also less sensitive to overfitting as it uses only 205 classification features, which is around 100 times less features than in similar systems based on bag-of-words features. We also provide an overview of the classification features most indicative of the different phases of cognitive presence that gives an additional insights into the nature of cognitive presence learning cycle. Overall, our results show great potential of the proposed approach, with an added benefit of providing further characterization of the cognitive presence coding scheme.
Resumo:
Environmental changes have put great pressure on biological systems leading to the rapid decline of biodiversity. To monitor this change and protect biodiversity, animal vocalizations have been widely explored by the aid of deploying acoustic sensors in the field. Consequently, large volumes of acoustic data are collected. However, traditional manual methods that require ecologists to physically visit sites to collect biodiversity data are both costly and time consuming. Therefore it is essential to develop new semi-automated and automated methods to identify species in automated audio recordings. In this study, a novel feature extraction method based on wavelet packet decomposition is proposed for frog call classification. After syllable segmentation, the advertisement call of each frog syllable is represented by a spectral peak track, from which track duration, dominant frequency and oscillation rate are calculated. Then, a k-means clustering algorithm is applied to the dominant frequency, and the centroids of clustering results are used to generate the frequency scale for wavelet packet decomposition (WPD). Next, a new feature set named adaptive frequency scaled wavelet packet decomposition sub-band cepstral coefficients is extracted by performing WPD on the windowed frog calls. Furthermore, the statistics of all feature vectors over each windowed signal are calculated for producing the final feature set. Finally, two well-known classifiers, a k-nearest neighbour classifier and a support vector machine classifier, are used for classification. In our experiments, we use two different datasets from Queensland, Australia (18 frog species from commercial recordings and field recordings of 8 frog species from James Cook University recordings). The weighted classification accuracy with our proposed method is 99.5% and 97.4% for 18 frog species and 8 frog species respectively, which outperforms all other comparable methods.
Resumo:
In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.