325 resultados para Viewpoints simulation
Resumo:
Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.
Resumo:
A mentor’s feedback can present professional insights to allow a mentee to reflect and develop practice. This paper positions two models for feedback that have emanated from empirical studies. It also demonstrates the diverse viewpoints of mentors and suggests strategies for providing quality feedback. In one qualitative study, 24 mentors observed a final-year preservice teacher through a professionally video-recorded lesson and wrote their observations towards giving feedback to the potential mentee. Tables illustrated in the paper, show that mentors’ positive feedback and constructive criticisms vary considerably on the same observed events. Data from this study were synthesised to posit a theoretical model for analysing mentor feedback in an interconnected, three-way Venn diagram, namely: visual, auditory and conceptual frames. Another study (n=28), which is a collection of mentor teachers’ work samples during the Mentoring for Effective Teaching (MET) program, provides strategies within six feedback practices, that is: (1) negotiated mentor-mentee expectations for providing feedback on practices, (2) reviewing teaching plans, (3) arranging for observations of practices, (4) providing oral feedback, (5) providing written feedback, and; (6) presenting opportunities for the mentee to evaluate teaching practices with consideration of the mentor’s feedback. For example, on the last mentioned practice (6) there were strategies such as “Plan a time for evaluation of practices (guided reflection)”, “Read the mentee’s reflection on practice and discuss how it aligns with your observations of their practices”, and “Highlight verbally and/or in writing where the mentee is perceptive about the reflection and how the reflection could be enhanced for future evaluations”. Developing a range of strategies that may assist the mentee in professional growth, include enlisting a community of mentors, ensuring mentors have a repertoire of strategies for articulating feedback, and using mentor feedback tools and models. This study has implications for the development of feedback models and strategies.
Resumo:
A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.
Resumo:
A number of Intelligent Transportation Systems (ITS) were used with an advanced driving simulator to assess its influence on driving behavior. Three types of ITS interventions namely, Video in-vehicle (ITS1), Audio in-vehicle (ITS2), and On-road flashing marker (ITS3) were tested. Then, the results from the driving simulator were used as inputs for a developed model using a traffic micro-simulation (Vissim 5.4) in order to assess the safety interventions. Using a driving simulator, 58 participants were required to drive through a number of active and passive crossings with and without an ITS device and in the presence or absence of an approaching train. The effect of driver behavior changing in terms of speed and compliance rate was greater at passive crossings than at active crossings. The difference in speed of drivers approaching ITS devices was very small which indicates that ITS helps drivers encounter the crossings in a safer way. Since the current traffic simulation was not able to replicate a dynamic speed change or a probability of stopping that varies based on different ITS safety devices, some modifications of the current traffic simulation were conducted. The results showed that exposure to ITS devices at active crossings did not influence the drivers’ behavior significantly according to the traffic performance indicators used, such as delay time, number of stops, speed, and stopped delay. On the other hand, the results of traffic simulation for passive crossings, where low traffic volumes and low train headway normally occur, showed that ITS devices improved overall traffic performance.