276 resultados para Traffic congestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to understand the fundamental aspects of air quality in traffic tunnel environments, field campaigns were conducted to measure polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and other important pollutants within two traffic tunnels in Nam San (NS) and Hong Ji (HJ) in Korea in 2009 and 2010. The mean concentrations of ∑PCDD/Fs (in fg/m(3)) at the two tunnel sites were 1270 (± 880) and 1200 (± 810), respectively. These values were moderately lower than those measured at a non-tunnel urban background site (1350 (± 780) fg/m(3))--selected as a reference in this study. In addition, seasonal patterns of dioxin concentrations were clearly evident at the traffic tunnels like the urban reference site, showing higher levels during the winter (and spring) than the summer (and fall). The observed seasonal variations were driven by changes in the concentrations of ∑PCDF congeners, while ∑PCDD concentrations showed little seasonality. The results of our study suggest that there is no significant difference in source characteristics between the two investigated tunnel sites and urban location, although the role of gasoline and diesel fueled vehicles are considered as the major source in determining the PCDDs and PCDF levels in a tunnel environment. However, given the relative increase in other important ambient pollutant (e.g. PM10) concentrations over ∑PCDD/Fs in tunnel air (compared to urban background air), the balance of sources in tunnels is clearly different from those in urban air overall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the platoon dispersion model that is part of the 2010 Highway Capacity Manual that is used for forecasting downstream traffic flows for analyzing both signalized and TWSC intersections. The paper focuses on the effect of platoon dispersion on the proportion of time blocked, the conflicting flow rate, and the capacity flow rate for the major street left turn movement at a TWSC intersection. The existing HCM 2010 methodology shows little effect on conflicting flow or capacity for various distances downstream from the signalized intersection. Two methods are suggested for computing the conflicting flow and capacity of minor stream movements at the TWSC intersection that have more desirable properties than the existing HCM method. Further, if the existing HCM method is retained, the results suggest that the upstream signals model be dropped from the HCM method for TWSC intersections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intrinsic challenge associated with evaluating proposed techniques for detecting Distributed Denial-of-Service (DDoS) attacks and distinguishing them from Flash Events (FEs) is the extreme scarcity of publicly available real-word traffic traces. Those available are either heavily anonymised or too old to accurately reflect the current trends in DDoS attacks and FEs. This paper proposes a traffic generation and testbed framework for synthetically generating different types of realistic DDoS attacks, FEs and other benign traffic traces, and monitoring their effects on the target. Using only modest hardware resources, the proposed framework, consisting of a customised software traffic generator, ‘Botloader’, is capable of generating a configurable mix of two-way traffic, for emulating either large-scale DDoS attacks, FEs or benign traffic traces that are experimentally reproducible. Botloader uses IP-aliasing, a well-known technique available on most computing platforms, to create thousands of interactive UDP/TCP endpoints on a single computer, each bound to a unique IP-address, to emulate large numbers of simultaneous attackers or benign clients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With increasing motorisation, road safety has become a major concern within Oman. Internationally, traffic policing plays a major role in improving road safety. Within Oman, the Royal Oman Police's (ROP) Directorate General of Traffic is responsible for policing traffic laws. Many common enforcement approaches originate from culturally different jurisdictions. The ROP is a relatively young policing force and may have different operational practices. Prior to applying practices from other jurisdictions it is important to understand the beliefs and expectations within the Directorate General of Traffic. Further, there is a need for individuals to understand their role and what is expected of them. Therefore, it is important to explore the agreement between levels of the ROP to determine how strategies and expectations transfer within the organisation. Interviews were conducted with 19 police officers from various levels of the ROP. A number of themes and findings emerged. Individuals at the upper level of the traffic police had a clear knowledge of the role of the ROP, believed that traffic police know what is expected of them, are well trained in their role and can have a very positive influence on road safety. These beliefs were less certain lower within the organisations with traffic officers having little knowledge of the role of the ROP or what was expected of them, felt undertrained, and believed their peers have little positive impact on road safety. There is a need to address barriers within the ROP in order to positively impact road safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Constrained topography and complex road geometry along rural mountainous roads often represent a demanding driving situation. As a result, traffic crashes along mountainous roads are likely to have different characteristics to crashes on roads in flatter areas; however, there is little research on this topic. The objective of this study is to examine the characteristics of road traffic crashes on rural mountainous roads and to compare these with the characteristics of crashes on non-mountainous roads. This paper explores and compares general crash characteristics including crash type, crash severity, roadway geometric features and environmental factors, and road user/vehicle characteristics. Five years of road traffic crash data (2008-2012) for Sabah were obtained from the Malaysian Institute of Road Safety Research. During this period, a total of 25,439 crashes occurred along federal roads in Sabah, of which 4,875 crashes occurred in mountainous areas. Categorical data analysis techniques were used to examine the differences between mountainous and non-mountainous crashes. Results show that the odds ratio of ‘out-of-control’ crashes and the crash involvement due to speeding are respectively about 4.2 times and 2.8 times higher on mountainous than non-mountainous roads. Other factors and crash characteristics that increase the odds of crashes along mountainous roads compared with non-mountainous roads include horizontal curved sections compared with straight sections, single-vehicle crashes compared with multi-vehicle crashes and weekend crashes compared with weekday crashes. This paper identifies some of the basic characteristics of crashes along rural mountainous roads to aid future research on traffic safety along mountainous roads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Studies from different parts of the world have indicated that the impact of road traffic incidents disproportionally affects young adults. Few known studies have been forthcoming from Arabian Gulf countries. Within Oman, a high proportion of the population is under the age of 20. Coupled with the drastic increase of motorization in recent years there is a need to understand the state of road safety among young people in Oman. The current research aimed to explore the prevalence and characteristics of road traffic injuries among young drivers aged 17-25 years. Methods Crash data from 2009-2011 was extracted from the Directorate General of Traffic, Royal Oman Police (ROP) database in Oman. The data was analyzed to explore the impact of road crashes on young people (17-25 years), the characteristics of young driver crashes and how these differ from older drivers and to identify key predictors of fatalities in young driver crashes. Results Overall, young people were over-represented in injuries and fatalities within the sample time period. While it is true that many young people in crashes were driving at the time, it was also evident that young people were often a victim in a crash caused by someone else. Thus, to reduce the impact of road crashes on young people, there is a need to generally address road safety within Oman. When young drivers were involved in crashes they were predominantly male. The types of crashes these drivers have can be broadly attributed to risk taking and inexperience. Speeding and night time driving were the key risk factors for fatalities. Conclusion The results highlight the need to address young driver safety in Oman. From these findings, the introduction of a graduated driver licensing system with night time driving restrictions could significantly improve young driver safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common theme in many accounts of road safety and road use in low and middle income countries is a widespread lack of compliance with traffic laws and related legislation. A key element of the success of road crash prevention strategies in high income countries has been the achievement of safer road user behaviour through compliance with traffic laws. Deterrence-based approaches such as speed cameras and random breath testing, which rely on drivers making an assessment that they are likely to be caught if they offend, have been very effective in this regard. However, the long term success of (for example) drink driving legislation has been supported by drivers adopting a moral approach to compliance rather than relying solely on the intensity of police operations. For low and middle income countries such morally based compliance is important, since levels of police resourcing are typically much lower than in Western countries. In the absence of morally based compliance, it is arguable that the patterns of behaviours observed in low and middle income countries can be described as "pragmatic driving": compliance only when there is a high chance of being detected and fined, or where a crash might occur. The potential characteristics of pragmatic driving in the macro-, meso- and micro-context of driving and the enforcement approach that could address it are outlined, with reference to the limited existing information available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travel speed is one of the most critical parameters for road safety; the evidence suggests that increased vehicle speed is associated with higher crash risk and injury severity. Both naturalistic and simulator studies have reported that drivers distracted by a mobile phone select a lower driving speed. Speed decrements have been argued to be a risk compensatory behaviour of distracted drivers. Nonetheless, the extent and circumstances of the speed change among distracted drivers are still not known very well. As such, the primary objective of this study was to investigate patterns of speed variation in relation to contextual factors and distraction. Using the CARRS-Q high-fidelity Advanced Driving Simulator, the speed selection behaviour of 32 drivers aged 18-26 years was examined in two phone conditions: baseline (no phone conversation) and handheld phone operation. The simulator driving route contained five different types of road traffic complexities, including one road section with a horizontal S curve, one horizontal S curve with adjacent traffic, one straight segment of suburban road without traffic, one straight segment of suburban road with traffic interactions, and one road segment in a city environment. Speed deviations from the posted speed limit were analysed using Ward’s Hierarchical Clustering method to identify the effects of road traffic environment and cognitive distraction. The speed deviations along curved road sections formed two different clusters for the two phone conditions, implying that distracted drivers adopt a different strategy for selecting driving speed in a complex driving situation. In particular, distracted drivers selected a lower speed while driving along a horizontal curve. The speed deviation along the city road segment and other straight road segments grouped into a different cluster, and the deviations were not significantly different across phone conditions, suggesting a negligible effect of distraction on speed selection along these road sections. Future research should focus on developing a risk compensation model to explain the relationship between road traffic complexity and distraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow. Since the MFD represents the area-wide network traffic performance, studies on perimeter control strategies and network-wide traffic state estimation utilising the MFD concept have been reported. Most previous works have utilised data from fixed sensors, such as inductive loops, to estimate the MFD, which can cause biased estimation in urban networks due to queue spillovers at intersections. To overcome the limitation, recent literature reports the use of trajectory data obtained from probe vehicles. However, these studies have been conducted using simulated datasets; limited works have discussed the limitations of real datasets and their impact on the variable estimation. This study compares two methods for estimating traffic state variables of signalised arterial sections: a method based on cumulative vehicle counts (CUPRITE), and one based on vehicles’ trajectory from taxi Global Positioning System (GPS) log. The comparisons reveal some characteristics of taxi trajectory data available in Brisbane, Australia. The current trajectory data have limitations in quantity (i.e., the penetration rate), due to which the traffic state variables tend to be underestimated. Nevertheless, the trajectory-based method successfully captures the features of traffic states, which suggests that the trajectories from taxis can be a good estimator for the network-wide traffic states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ramp metering (RM) is an access control for motorways, in which a traffic signal is placed at on-ramps to regulate the rate of vehicles entering the motorway and thus to preserve the motorway capacity. In general, RM algorithms fall into two categories by their effective scope: local control and coordinated control. Local control algorithm determines the metering rate based on the traffic condition on adjacent motorway mainline and the on-ramp. Conversely, coordinated RM strategies make use of measurements from the entire motorway network to operate individual ramp signals for optimal performance at the network level. This study proposes a multi-hierarchical strategy for on-ramp coordination. The strategy is structured in two layers. At the higher layer, a centralised, predictive controller plans the coordination control within a long update interval based on the location of high-risk breakdown flow. At the lower layer, reactive controllers determine the metering rates of those ramps involved in the ramp coordination with a short update interval. This strategy is modelled and applied to the northbound model of the Pacific Motorway in a micro-simulation platform (AIMSUN). The simulation results show that the proposed strategy effectively delays the onset of congestion and reduces total congestion with better managed on-ramp queues.