296 resultados para Parametric function
Resumo:
Fractional anisotropy (FA), a very widely used measure of fiber integrity based on diffusion tensor imaging (DTI), is a problematic concept as it is influenced by several quantities including the number of dominant fiber directions within each voxel, each fiber's anisotropy, and partial volume effects from neighboring gray matter. With High-angular resolution diffusion imaging (HARDI) and the tensor distribution function (TDF), one can reconstruct multiple underlying fibers per voxel and their individual anisotropy measures by representing the diffusion profile as a probabilistic mixture of tensors. We found that FA, when compared with TDF-derived anisotropy measures, correlates poorly with individual fiber anisotropy, and may sub-optimally detect disease processes that affect myelination. By contrast, mean diffusivity (MD) as defined in standard DTI appears to be more accurate. Overall, we argue that novel measures derived from the TDF approach may yield more sensitive and accurate information than DTI-derived measures.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller–Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥sqrt(2δ) in the F-KPP equation.
Resumo:
Fusing data from multiple sensing modalities, e.g. laser and radar, is a promising approach to achieve resilient perception in challenging environmental conditions. However, this may lead to \emph{catastrophic fusion} in the presence of inconsistent data, i.e. when the sensors do not detect the same target due to distinct attenuation properties. It is often difficult to discriminate consistent from inconsistent data across sensing modalities using local spatial information alone. In this paper we present a novel consistency test based on the log marginal likelihood of a Gaussian process model that evaluates data from range sensors in a relative manner. A new data point is deemed to be consistent if the model statistically improves as a result of its fusion. This approach avoids the need for absolute spatial distance threshold parameters as required by previous work. We report results from object reconstruction with both synthetic and experimental data that demonstrate an improvement in reconstruction quality, particularly in cases where data points are inconsistent yet spatially proximal.
Resumo:
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Resumo:
The total entropy utility function is considered for the dual purpose of Bayesian design for model discrimination and parameter estimation. A sequential design setting is proposed where it is shown how to efficiently estimate the total entropy utility for a wide variety of data types. Utility estimation relies on forming particle approximations to a number of intractable integrals which is afforded by the use of the sequential Monte Carlo algorithm for Bayesian inference. A number of motivating examples are considered for demonstrating the performance of total entropy in comparison to utilities for model discrimination and parameter estimation. The results suggest that the total entropy utility selects designs which are efficient under both experimental goals with little compromise in achieving either goal. As such, the total entropy utility is advocated as a general utility for Bayesian design in the presence of model uncertainty.
Resumo:
In this paper it is demonstrated how the Bayesian parametric bootstrap can be adapted to models with intractable likelihoods. The approach is most appealing when the semi-automatic approximate Bayesian computation (ABC) summary statistics are selected. After a pilot run of ABC, the likelihood-free parametric bootstrap approach requires very few model simulations to produce an approximate posterior, which can be a useful approximation in its own right. An alternative is to use this approximation as a proposal distribution in ABC algorithms to make them more efficient. In this paper, the parametric bootstrap approximation is used to form the initial importance distribution for the sequential Monte Carlo and the ABC importance and rejection sampling algorithms. The new approach is illustrated through a simulation study of the univariate g-and- k quantile distribution, and is used to infer parameter values of a stochastic model describing expanding melanoma cell colonies.
Resumo:
Interleukin-10 (IL-10) is an important immunoregulatory cytokine produced by various types of cells. Researchers describe here the isolation and characterization of olive flounder IL-10 (ofIL-10) cDNA and genomic organization. The ofIL-10 gene encodes a 187 amino acid protein and is composed of a five exon/four intron structure, similar to other known IL-10 genes. The ofIL-10 promoter sequence analysis shows a high level of homology in putative binding sites for transcription factors which are sufficient for transcriptional regulation ofIL-10. Important structural residues are maintained in the ofIL-10 protein including the four cysteines responsible for the two intra-chain disulfide bridges reported for human IL-10 and two extra cysteine residues that exist only in fish species. The phylogenetic analysis clustered ofIL-10 with other fish IL-10s and apart from mammalian IL-10 molecules. Quantitative real-time Polymerase Chain Reaction (PCR) analysis demonstrated ubiquitous ofIL-10 gene expression in the 13 tissues examined. Additionally, the induction of ofIL-10 gene expression was observed in the kidney tissue from olive flounder infected with bacteria (Edawardsiella tarda) or virus (Viral Hemorrhagic Septicemia Virus; VHSV). These data indicate that IL-10 is an important immune regulator that is conserved strictly genomic organization and function during the evolution of vertebrate immunity.
Resumo:
An innovative cement-based soft-hard-soft (SHS) multi-layer composite has been developed for protective infrastructures. Such composite consists of three layers including asphalt concrete (AC), high strength concrete (HSC), and engineered cementitious composites (ECC). A three dimensional benchmark numerical model for this SHS composite as pavement under blast load was established using LSDYNA and validated by field blast test. Parametric studies were carried out to investigate the influence of a few key parameters including thickness and strength of HSC and ECC layers, interface properties, soil conditions on the blast resistance of the composite. The outcomes of this study also enabled the establishment of a damage pattern chart for protective pavement design and rapid repair after blast load. Efficient methods to further improve the blast resistance of the SHS multi-layer pavement system were also recommended.
Early mathematical learning: Number processing skills and executive function at 5 and 8 years of age
Resumo:
This research investigated differences and associations in performance in number processing and executive function for children attending primary school in a large Australian metropolitan city. In a cross-sectional study, performance of 25 children in the first full-time year of school, (Prep; mean age = 5.5 years) and 21 children in Year 3 (mean age = 8.5 years) completed three number processing tasks and three executive function tasks. Year 3 children consistently outperformed the Prep year children on measures of accuracy and reaction time, on the tasks of number comparison, calculation, shifting, and inhibition but not on number line estimation. The components of executive function (shifting, inhibition, and working memory) showed different patterns of correlation to performance on number processing tasks across the early years of school. Findings could be used to enhance teachers’ understanding about the role of the cognitive processes employed by children in numeracy learning, and so inform teachers’ classroom practices.
Resumo:
Silk fibroin provides a promising biomaterial for ocular tissue reconstruction including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a similar thickness as Bruch’s membrane (3 μm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (Transwell). Cultures established on either material developed a cobblestoned morphology with partial pigmentation within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned medium collected from above and below both membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrate that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model.
Resumo:
Human genetic and animal studies have implicated the costimulatory molecule CD40 in the development of multiple sclerosis (MS). We investigated the cell specific gene and protein expression variation controlled by the CD40 genetic variant(s) associated with MS, i.e. the T-allele at rs1883832. Previously we had shown that the risk allele is expressed at a lower level in whole blood, especially in people with MS. Here, we have defined the immune cell subsets responsible for genotype and disease effects on CD40 expression at the mRNA and protein level. In cell subsets in which CD40 is most highly expressed, B lymphocytes and dendritic cells, the MS-associated risk variant is associated with reduced CD40 cell-surface protein expression. In monocytes and dendritic cells, the risk allele additionally reduces the ratio of expression of full-length versus truncated CD40 mRNA, the latter encoding secreted CD40. We additionally show that MS patients, regardless of genotype, express significantly lower levels of CD40 cell-surface protein compared to unaffected controls in B lymphocytes. Thus, both genotype-dependent and independent down-regulation of cell-surface CD40 is a feature of MS. Lower expression of a co-stimulator of T cell activation, CD40, is therefore associated with increased MS risk despite the same CD40 variant being associated with reduced risk of other inflammatory autoimmune diseases. Our results highlight the complexity and likely individuality of autoimmune pathogenesis, and could be consistent with antiviral and/or immunoregulatory functions of CD40 playing an important role in protection from MS. © 2015 Field et al.
Resumo:
The objective of this study is to examine the association between ambient temperature and children’s lung function in Baotou, China. We recruited 315 children (8–12 years) from Baotou, China in the spring of 2004, 2005, and 2006. They performed three successive forced expiratory measurements three times daily (morning, noon, and evening) for about 5 weeks. The highest peak expiratory flow (PEF) was recorded for each session. Daily data on ambient temperature, relative humidity, and air pollution were monitored during the same period. Mixed models with a distributed lag structure were used to examine the effects of temperature on lung function while adjusting for individual characteristics and environmental factors. Low temperatures were significantly associated with decreases in PEF. The effects lasted for lag 0–2 days. For all participants, the cumulative effect estimates (lag 0–2 days) were −1.44 (−1.93, −0.94) L/min, −1.39 (−1.92, −0.86) L/min, −1.40 (−1.97, −0.82) L/min, and −1.28 (−1.69, −0.88) L/min for morning, noon, evening, and daily mean PEF, respectively, associated with 1 °C decrease in daily mean temperature. Generally, the effects of temperature were slightly stronger in boys than in girls for noon, evening, and daily mean PEF, while the effects were stronger in girls for morning PEF. PM2.5 had joint effects with temperature on children’s PEF. Higher PM2.5 increased the impacts of low temperature. Low ambient temperatures are associated with lower lung function in children in Baotou, China. Preventive health policies will be required for protecting children from the cold weather.
Resumo:
Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.