264 resultados para Outdoor
Resumo:
Ambient ultrafine particle number concentrations (PNC) have inhomogeneous spatio-temporal distributions and depend on a number of different urban factors, including background conditions and distant sources. This paper quantitatively compares exposure to ambient ultrafine particles at urban schools in two cities in developed countries, with high insolation climatic conditions, namely Brisbane (Australia) and Barcelona (Spain). The analysis used comprehensive indoor and outdoor air quality measurements at 25 schools in Brisbane and 39 schools in Barcelona. PNC modes were analysed with respect to ambient temperature, land use and urban characteristics, combined with the measured elemental carbon concentrations, NOx (Brisbane) and NO2 (Barcelona). The trends and modes of the quantified weekday average daily cycles of ambient PNC exhibited significant differences between the two cities. PNC increases were observed during traffic rush hours in both cases. However, the mid-day peak was dominant in Brisbane schools and had the highest contribution to total PNC for both indoors and outdoors. In Barcelona, the contribution from traffic was highest for ambient PNC, while the mid-day peak had a slightly higher contribution for indoor concentrations. Analysis of the relationships between PNC and land use characteristics in Barcelona schools showed a moderate correlation with the percentage of road network area and an anti-correlation with the percentage of green area. No statistically significant correlations were found for Brisbane. Overall, despite many similarities between the two cities, school-based exposure patterns were different. The main source of ambient PNC at schools was shown to be traffic in Barcelona and mid-day new particle formation in Brisbane. The mid-day PNC peak in Brisbane could have been driven by the combined effect of background and meteorological conditions, as well as other local/distant sources. The results have implications for urban development, especially in terms of air quality mitigation and management at schools.
Resumo:
Physical activity (PA) is essential for human health and wellbeing across all age, socioeconomic and ethnic groups. Engagement with the natural world is a new defining criterion for enhancing the benefits of PA particularly for children and young people. Interacting with nature benefits children’s social and emotional wellbeing, develops resilience and reduces the risk of obesity and type 2 diabetes across all population groups. Governments around the world are now recognising the importance of children spending more active time outdoors. However, children’s outdoor activities, free play and nature-related exploration are often structured and supervised by adults due to safety concerns and risks. In this context schools become more accessible and safe options for children to engage in PA outdoors with the presence of nature features. Research on school designs involving young children has revealed that children prefer nature-related features in school environments. Affordances in nature may increase children’s interest in physically active behaviours. Given that present school campuses are designed for operational efficiency and economic reasons there is a need to re-design schools responding to the positive role of nature on human health. If schools were re-designed to incorporate diverse natural features children’s PA and consequent health and wellbeing would likely improve markedly.
Resumo:
PURPOSE The purpose of this study was to examine the relationship between objectively measured ambient light exposure and longitudinal changes in axial eye growth in childhood. METHODS A total of 101 children (41 myopes and 60 nonmyopes), 10 to 15 years of age participated in this prospective longitudinal observational study. Axial eye growth was determined from measurements of ocular optical biometry collected at four study visits over an 18-month period. Each child’s mean daily light exposure was derived from two periods (each 14 days long) of objective light exposure measurements from a wrist-worn light sensor. RESULTS Over the 18-month study period, a modest but statistically significant association between greater average daily light exposure and slower axial eye growth was observed (P ¼ 0.047). Other significant predictors of axial eye growth in this population included children’s refractive error group (P < 0.001), sex (P < 0.01), and age (P < 0.001). Categorized according to their objectively measured average daily light exposure and adjusting for potential confounders (age, sex, baseline axial length, parental myopia, nearwork, and physical activity), children experiencing low average daily light exposure (mean daily light exposure: 459 6 117 lux, annual eye growth: 0.13 mm/y) exhibited significantly greater eye growth than children experiencing moderate (842 6 109 lux, 0.060 mm/y), and high (1455 6 317 lux, 0.065 mm/y) average daily light exposure levels (P ¼ 0.01). CONCLUSIONS In this population of children, greater daily light exposure was associated with less axial eye growth over an 18-month period. These findings support the role of light exposure in the documented association between time spent outdoors and childhood myopia.
Resumo:
• Although there is evidence that outdoor activity is an important factor involved in the development of childhood refractive error,1,2 the mechanism underlying the association between more outdoor activity and less myopia in childhood is not clear. • In this prospective longitudinal study, the relationship between objectively measured ambient light exposure and eye growth in childhood was examined.
Resumo:
Mixed reality stories (MRS) unfold simultaneously in the physical and the virtual world. Advancements in digital technologies, which are now able to capture more contextual information about our physical environments, are enabling novel ways of blending the two worlds. To explore the process of creating stories from this perspective, we conducted a study with creative writers, in which we asked them to write a MRS script for outdoor running. While we saw instances of intentional connections between physical and virtual worlds in their work, we also observed the use of ambiguity or even deliberate contradiction with available contextual information. In this paper we discuss how these approaches can be beneficial for MRS and propose directions for future work.
Resumo:
Characterising the release of different types of Engineered Nanoparticles (ENPs) from various processes is of critical importance for the assessment of human exposure, as well as understanding the possible health effects of these particles. Therefore, the main aim of this chapter is to present a comprehensive review of studies which report on the release of airborne ENPs in different nanotechnology workplaces. The chapter will cover topics of relevance to the occupational characterisation of ENP emissions, ranging from the identification of different particle release sources and scenarios, to measurement methods and working towards a more uniform approach to characterisation. Furthermore, a brief review of ENP exposure control strategies, together with the application of mathematical modelling as an effective tool for the characterisation of emissions at nanotechnology workplaces is included.
Resumo:
This thesis brings together different scientific and engineering disciplines, as well as current legislation, on the subject of unwanted night-time lighting effects on humans and the biosphere. The assessment criteria of Australian Standard AS4282-1997 Control of the obtrusive effects of outdoor lighting are reviewed and criteria incorporating the quantity, quality, spectral composition of light, and exposure time, are proposed to improve light engineering practice. The immediate direct concerns of humans are considered as well as the effects on biota generally in the environment, particularly as outdoor artificial lighting proliferation has the potential to change the environment for human habitation in the longer term.
Resumo:
Objective Australia has one of the highest skin cancer incidence and mortality rates in the world. Outdoor workers are a high risk group. Australian workplaces are undergoing large scale safety related changes, yet the mandate to provide specific sun safe practices remains absent. With much of the previous research aiming to improve sun safety in the workplace being quantitative in nature, relatively little is known about why certain sun safe strategies will or will not be successful in workplaces. Methods This qualitative article explores the enablers and barriers identified during an 18-month mixed methods project conducted in Queensland, Australia which aimed to improve workplace sun safe interventions. Results A variety of key enablers and barriers to implementing sun safe interventions in the workplace were identified, including presence of an engaged workplace champion, ownership and innovation by the workers. Conclusions These findings were part of a broader integration of interlinked qualitative and quantitative methods to yield a more complete picture of the determinants of the issue, implementation process and likelihood of changes at the workplace. Implications The paper provides guidance for public and occupational health practitioners on the selection of the most promising strategies when assisting workplaces to become sun safe.
Resumo:
The Body Area Network (BAN) is an emerging technology that focuses on monitoring physiological data in, on and around the human body. BAN technology permits wearable and implanted sensors to collect vital data about the human body and transmit it to other nodes via low-energy communication. In this paper, we investigate interactions in terms of data flows between parties involved in BANs under four different scenarios targeting outdoor and indoor medical environments: hospital, home, emergency and open areas. Based on these scenarios, we identify data flow requirements between BAN elements such as sensors and control units (CUs) and parties involved in BANs such as the patient, doctors, nurses and relatives. Identified requirements are used to generate BAN data flow models. Petri Nets (PNs) are used as the formal modelling language. We check the validity of the models and compare them with the existing related work. Finally, using the models, we identify communication and security requirements based on the most common active and passive attack scenarios.