285 resultados para Null-Plane Gauge Conditions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Evaluation of scapular posture is an integral component of the clinical assessment of painful neck disorders. The aim of this study was to evaluate agreement between therapist judgements of scapula posture in multiple biomechanical planes in individuals with neck pain. Design Inter-therapist reliability study. Setting Research laboratory. Participants Fifteen participants with chronic neck pain. Main outcome measures Four physiotherapists recorded ratings of scapular orientation (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane) under four test conditions (at rest, and during three isometric shoulder conditions) in all participants. Inter-therapist reliability was expressed using both generalized and paired kappa coefficient. Results Following adjustment for expected agreement and the high prevalence of neutral ratings (81%), on average both the generalised kappa (0.37) as well as Cohen's Kappa for the two therapist pairs (0.45 and 0.42) demonstrated only slight to moderate inter-therapist reliability. Conclusions The findings suggest that ratings of scapular posture in individuals with neck pain by visual inspection has only slight to moderate reliability and should only be used in conjunction with other clinical tests when judging scapula function in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge steel frame (LSF) floor systems are generally made of lipped channel section joists and lined with gypsum plasterboards to provide adequate fire resistance rating under fire conditions. Recently a new LSF floor system made of welded hollow flange channel (HFC) section was developed and its fire performance was investigated using full scale fire tests. The new floor systems gave higher fire resistance ratings in comparison to conventional LSF floor systems. To avoid expensive and time consuming full scale fire tests, finite element analyses were also performed to simulate the fire performance of LSF floors made of HFC joists using both steady and transient state methods. This paper presents the details of the developed finite element models of HFC joists to simulate the structural fire performance of the LSF floor systems under standard fire conditions. Finite element analyses were performed using the measured time–temperature profiles of the failed joists from the fire tests, and their failure times, temperatures and modes, and deflection versus time curves were obtained. The developed finite element models successfully predicted the structural performance of LSF floors made of HFC joists under fire conditions. They were able to simulate the complex behaviour of thin cold-formed steel joists subjected to non-uniform temperature distributions, and local buckling and yielding effects. This study also confirmed the superior fire performance of the newly developed LSF floors made of HFC joists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloy nanoparticles (NPs) of gold and palladium on ZrO2 support (Au–Pd@ZrO2) were found to be highly active in oxidation of benzyl alcohols and can be used for the tandem synthesis of imines from benzyl alcohols and amines via a one-pot, two-step process at mild reaction conditions. The first step of the process is oxidation of benzyl alcohol to benzaldehyde, excellent yields were achieved after 7 h reaction at 40 °C without addition of any base. In the second step, aniline was introduced into the reaction system to produced N-benzylideneaniline. The benzaldehyde obtained in the first step was completely consumed within 1 h. A range of benzyl alcohols and amines were investigated for the general applicability of the Au–Pd alloy catalysts. It is found that the performance of the catalysts depends on the Au–Pd metal contents and composition. The optimal catalyst is 3.0 wt% Au–Pd@ZrO2 with a Au:Pd molar ratio 1:1. The alloy NP catalyst exhibited superior catalytic properties to pure AuNP or PdNP because the surface of alloy NPs has higher charge heterogeneity than that of pure metal NPs according to simulation of density function theory (DFT)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uncertainty assessments of herbicide losses from rice paddies in Japan associated with local meteorological conditions and water management practices were performed using a pesticide fate and transport model, PCPF-1, under the Monte Carlo (MC) simulation scheme. First, MC simulations were conducted for five different cities with a prescribed water management scenario and a 10-year meteorological dataset of each city. The effectiveness of water management was observed regarding the reduction of pesticide runoff. However, a greater potential of pesticide runoff remained in Western Japan. Secondly, an extended analysis was attempted to evaluate the effects of local water management and meteorological conditions between the Chikugo River basin and the Sakura River basin using uncertainty inputs processed from observed water management data. The results showed that because of more severe rainfall events, significant pesticide runoff occurred in the Chikugo River basin even when appropriate irrigation practices were implemented. © Pesticide Science Society of Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of five illicit drug markers in wastewater was tested under different sewer conditions using laboratory-scale sewer reactors. Wastewater was spiked with deuterium labelled isotopes of cocaine, benzoyl ecgonine, methamphetamine, MDMA and 6-acetyl morphine to avoid interference from the native isotopes already present in the wastewater matrix. The sewer reactors were operated at 20 °C and pH 7.5, and wastewater was sampled at 0, 0.25, 0.5, 1, 2, 3, 6, 9 and 12 h to measure the transformation/degradation of these marker compounds. The results showed that while methamphetamine, MDMA and benzoyl ecgonine were stable in the sewer reactors, cocaine and 6-acetyl morphine degraded quickly. Their degradation rates are significantly higher than the values reportedly measured in wastewater alone (without biofilms). All the degradation processes followed first order kinetics. Benzoyl ecgonine and morphine were also formed from the degradation of cocaine and 6-acetyl morphine, respectively, with stable formation rates throughout the test. These findings suggest that, in sewage epidemiology, it is essential to have relevant information of the sewer system (i.e. type of sewer, hydraulic retention time) in order to accurately back-estimate the consumption of illicit drugs. More research is required to look into detailed sewer conditions (e.g. temperature, pH and ratio of biofilm area to wastewater volume among others) to identify their effects on the fate of illicit drug markers in sewer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Although lentiviral vectors have been widely used for in vitro and in vivo gene therapy researches, there have been few studies systematically examining various conditions that may affect the determination of the number of viable vector particles in a vector preparation and the use of Multiplicity of Infection (MOI) as a parameter for the prediction of gene transfer events. Methods: Lentiviral vectors encoding a marker gene were packaged and supernatants concentrated. The number of viable vector particles was determined by in vitro transduction and fluorescent microscopy and FACs analyses. Various factors that may affect the transduction process, such as vector inoculum volume, target cell number and type, vector decay, variable vector - target cell contact and adsorption periods were studied. MOI between 0-32 was assessed on commonly used cell lines as well as a new cell line. Results: We demonstrated that the resulting values of lentiviral vector titre varied with changes of conditions in the transduction process, including inoculum volume of the vector, the type and number of target cells, vector stability and the length of period of the vector adsorption to target cells. Vector inoculum and the number of target cells determine the frequencies of gene transfer event, although not proportionally. Vector exposure time to target cells also influenced transduction results. Varying these parameters resulted in a greater than 50-fold differences in the vector titre from the same vector stock. Commonly used cell lines in vector titration were less sensitive to lentiviral vector-mediated gene transfer than a new cell line, FRL 19. Within 0-32 of MOI used transducing four different cell lines, the higher the MOI applied, the higher the efficiency of gene transfer obtained. Conclusion: Several variables in the transduction process affected in in vitro vector titration and resulted in vastly different values from the same vector stock, thus complicating the use of MOI for predicting gene transfer events. Commonly used target cell lines underestimated vector titre. However, within a certain range of MOI, it is possible that, if strictly controlled conditions are observed in the vector titration process, including the use of a sensitive cell line, such as FRL 19 for vector titration, lentivector-mediated gene transfer events could be predicted. © 2004 Zhang et al; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In-plane shear capacity formulation of reinforced masonry is commonly conceived as the sum of the capacities of three parameters, viz, the masonry, the reinforcement, and the precompression. The term “masonry” incorporates the aspect ratio of the wall without any regard to the aspect ratio of the panels inscribed (and hence confined) by the vertical and the horizontal reinforced grout cores. This paper proposes design expressions in which the aspect ratio of such panels is explicitly included. For this purpose, the grouted confining cores are regarded as a grid of confining elements within which the panels are positioned. These confined masonry panels are then considered as building blocks for multi-bay, multi-storied confined masonry shear walls and analyzed using an experimentally validated macroscopic finite-element model. Results of the analyzes of 161 confined masonry walls containing panels of height to length ratio less than 1.0 have been regressed to formulate design expressions. These expressions have been first validated using independent test data sets and then compared with the existing equations in some selected international design standards. The concept of including the unreinforced masonry panel aspect ratio as an additional term in the design expression for partially grouted/confined masonry shear walls is recommended based on the conclusions from this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].