477 resultados para Multi-phase corrosion
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).
Resumo:
The mineral arsentsumebite Pb2Cu(AsO4)(SO4)(OH), a copper arsenate-sulfate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of SO42- AsO43- and HOAsO3 units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.
Resumo:
Some minerals are formed which show poorly defined X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of the oxyanions in such minerals. Among this group of minerals is mallestigite with formula Pb3Sb5+(SO4)(AsO4)(OH)6•3H2O. The objective of this research is to determine the molecular structure of the mineral mallestigite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. Mallestigite is a mineral formed in ancient waste dumps such as occurs at Mallestiger, Carinthia, Austria and as such is a mineral of archaeological significance.
Resumo:
In this paper, we seek to expand the use of direct methods in real-time applications by proposing a vision-based strategy for pose estimation of aerial vehicles. The vast majority of approaches make use of features to estimate motion. Conversely, the strategy we propose is based on a MR (Multi- Resolution) implementation of an image registration technique (Inverse Compositional Image Alignment ICIA) using direct methods. An on-board camera in a downwards-looking configuration, and the assumption of planar scenes, are the bases of the algorithm. The motion between frames (rotation and translation) is recovered by decomposing the frame-to-frame homography obtained by the ICIA algorithm applied to a patch that covers around the 80% of the image. When the visual estimation is required (e.g. GPS drop-out), this motion is integrated with the previous known estimation of the vehicles’ state, obtained from the on-board sensors (GPS/IMU), and the subsequent estimations are based only on the vision-based motion estimations. The proposed strategy is tested with real flight data in representative stages of a flight: cruise, landing, and take-off, being two of those stages considered critical: take-off and landing. The performance of the pose estimation strategy is analyzed by comparing it with the GPS/IMU estimations. Results show correlation between the visual estimation obtained with the MR-ICIA and the GPS/IMU data, that demonstrate that the visual estimation can be used to provide a good approximation of the vehicle’s state when it is required (e.g. GPS drop-outs). In terms of performance, the proposed strategy is able to maintain an estimation of the vehicle’s state for more than one minute, at real-time frame rates based, only on visual information.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
In Viet Nam, standards of nursing care fail to meet international competency standards. This increases risks to patient safety (eg. hospital acquired infection), consequently the Ministry of Health identified the need to strengthen nurse education in Viet Nam. This paper presents experiences of a piloted clinical teaching model developed in Ha Noi, to strengthen nurse led institutional capacity for in-service education and clinical teaching. Historically 90% of nursing education was conducted by physicians and professional development in hospitals for nurses was limited. There was minimal communication between hospitals and nursing schools about expectations of students and assessment and quality of the learning experience. As a result when students came to the clinical sites, no-one understood how to plan their learning objectives and utilise teaching and learning approaches appropriate to their level. Therefore student learning outcomes were variable. They focussed on procedures and techniques and “learning how to do” rather than learning how to plan, implement and evaluate patient care. This project is part of a multi-component capacity building program designed to improve nurse education in Viet Nam. The project was funded jointly by Queensland University of Technology (QUT) and the Australian Agency for International Development. Its aim was to develop a collaborative clinically-based model of teaching to create an environment that encourages evidence-based, student-centred clinical learning. Accordingly, strategies introduced promoted clinical teaching of competency based nursing practice utilising the regionally endorsed nurse core competency standards. Thirty nurse teachers from Viet Duc University Hospital and Hanoi Medical College participated in the program. These nurses and nurse teachers undertook face to face education in three workshops, and completed three assessment items. Assessment was applied, where participants integrated the concepts learned in each workshop and completed assessment tasks related to planning, implementing and evaluating teaching in the clinical area. Twenty of these participants were then selected to undertake a two week study tour in Brisbane, Australia where the clinical teaching model was refined and an action plan developed to integrate into both organisations with possible implementation across Viet Nam. Participants on this study tour also experienced clinical teaching and learning at QUT by attending classes held at the university, and were able to visit selected hospitals to experience clinical teaching in these settings as well. Effectiveness of the project was measured throughout the implementation phase and in follow up visits to the clinical site. To date changes have been noted on an individual and organisational level. There is also significant planning underway to incorporate the clinical teaching model developed across the organisation and how this may be implemented in other regions. Two participants have also been involved in disseminating aspects of this approach to clinical teaching in Ho Chi Minh, with further plans for more in-depth dissemination to occur throughout the country.
Resumo:
Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting geno-centric or environmentalist positions, with an overriding focus on operational issues. In this thesis, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Dynamical systems theory is utilised as a multidisciplinary theoretical rationale for the succession of studies, capturing how multiple interacting constraints can shape the development of expert performers. Phase I of the research examines experiential knowledge of coaches and players on the development of fast bowling talent utilising qualitative research methodology. It provides insights into the developmental histories of expert fast bowlers, as well as coaching philosophies on the constraints of fast bowling expertise. Results suggest talent development programmes should eschew the notion of common optimal performance models and emphasize the individual nature of pathways to expertise. Coaching and talent development programmes should identify the range of interacting constraints that impinge on the performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms. Phase II of this research comprises three further studies that investigate several of the key components identified as important for fast bowling expertise, talent identification and development extrapolated from Phase I of this research. This multidisciplinary programme of work involves a comprehensive analysis of fast bowling performance in a cross-section of the Cricket Australia high performance pathways, from the junior, emerging and national elite fast bowling squads. Briefly, differences were found in trunk kinematics associated with the generation of ball speed across the three groups. These differences in release mechanics indicated the functional adaptations in movement patterns as bowlers’ physical and anatomical characteristics changed during maturation. Second to the generation of ball speed, the ability to produce a range of delivery types was highlighted as a key component of expertise in the qualitative phase. The ability of athletes to produce consistent results on different surfaces and in different environments has drawn attention to the challenge of measuring consistency and flexibility in skill assessments. Examination of fast bowlers in Phase II demonstrated that national bowlers can make adjustments to the accuracy of subsequent deliveries during performance of a cricket bowling skills test, and perform a range of delivery types with increased accuracy and consistency. Finally, variability in selected delivery stride ground reaction force components in fast bowling revealed the degenerate nature of this complex multi-articular skill where the same performance outcome can be achieved with unique movement strategies. Utilising qualitative and quantitative methodologies to examine fast bowling expertise, the importance of degeneracy and adaptability in fast bowling has been highlighted alongside learning design that promotes dynamic learning environments.
Resumo:
Site-specific performance provides choices in audience experience via degrees of scale, proximity, levels of immersion and viewing perspectives. Beyond these choices, multi-site promenade events also form a connected audience/performer relationship in which moving together in time and space can produce a shared narrative and aesthetic sensibility of collective, yet individuated and shifting meanings. This paper interrogates this notion through audience/performer experiences in two separate multi-site, dance-led events. here/there/then/now occurred in four intimate sites within the Brisbane Powerhouse, providing a theatricalised platform for audiences to create linked narratives through open-ended and fragmented intertextuality. Accented Body, based on the concept of “the body as site and in site” and notions of connectivity, provided a more expansive platform for a similar, but heightened, shared engagement. Audiences traversed 6 outdoor and 2 indoor Brisbane sites moving to varying levels of a large complex. Eleven, predominantly interactive, screens provided links to other sites as well as to distributed presences in Seoul and London. The differentiation in scale and travel time between sites deepened the immersive experiences of audiences who reported transformative engagements with both site and architecture, accompanied by a sense of extended and yet quickened time.
Practical improvements to simultaneous computation of multi-view geometry and radial lens distortion
Resumo:
This paper discusses practical issues related to the use of the division model for lens distortion in multi-view geometry computation. A data normalisation strategy is presented, which has been absent from previous discussions on the topic. The convergence properties of the Rectangular Quadric Eigenvalue Problem solution for computing division model distortion are examined. It is shown that the existing method can require more than 1000 iterations when dealing with severe distortion. A method is presented for accelerating convergence to less than 10 iterations for any amount of distortion. The new method is shown to produce equivalent or better results than the existing method with up to two orders of magnitude reduction in iterations. Through detailed simulation it is found that the number of data points used to compute geometry and lens distortion has a strong influence on convergence speed and solution accuracy. It is recommended that more than the minimal number of data points be used when computing geometry using a robust estimator such as RANSAC. Adding two to four extra samples improves the convergence rate and accuracy sufficiently to compensate for the increased number of samples required by the RANSAC process.
Resumo:
This paper presents a practical framework to synthesize multi-sensor navigation information for localization of a rotary-wing unmanned aerial vehicle (RUAV) and estimation of unknown ship positions when the RUAV approaches the landing deck. The estimation performance of the visual tracking sensor can also be improved through integrated navigation. Three different sensors (inertial navigation, Global Positioning System, and visual tracking sensor) are utilized complementarily to perform the navigation tasks for the purpose of an automatic landing. An extended Kalman filter (EKF) is developed to fuse data from various navigation sensors to provide the reliable navigation information. The performance of the fusion algorithm has been evaluated using real ship motion data. Simulation results suggest that the proposed method can be used to construct a practical navigation system for a UAV-ship landing system.
Resumo:
This study seeks to analyse the adequacy of the current regulation of the payday lending industry in Australia, and consider whether there is a need for additional regulation to protect consumers of these services. The report examines the different regulatory approaches adopted in comparable OECD countries, and reviews alternative models for payday regulation, in particular, the role played by responsible lending. The study also examines the consumer protection mechanisms now in existence in Australia in the National Consumer Credit Protection Act 2009 (Cth) (NCCP) and the National Credit Code (NCC) contained in Schedule 1 of that Act and in the Australian Securities and Investments Commission Act 2001 (Cth).
Resumo:
Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the friction pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71, and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly-slug and slug-annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of dropset entrainment, higher superficial gas velocity was obtained at higher gravity level.