277 resultados para Molecular Diagnoses
Resumo:
Trimesic acid (TMA) and alcohols were recently shown to self-assemble into a stable, two-component linear pattern at the solution/highly oriented pyrolytic graphite (HOPG) interface. Away from equilibrium, the TMA/alcohol self-assembled molecular network (SAMN) can coexist with pure-TMA networks. Here, we report on some novel characteristics of these non-equilibrium TMA structures, investigated by scanning tunneling microscopy (STM). We observe that both the chicken-wire and flower-structure TMA phases can host 'guest' C60 molecules within their pores, whereas the TMA/alcohol SAMN does not offer any stable adsorption sites for the C60 molecules. The presence of the C60 molecules at the solution/solid interface was found to improve the STM image quality. We have taken advantage of the high-quality imaging conditions to observe unusual TMA bonding geometries at domain boundaries in the TMA/alcohol SAMN. Boundaries between aligned TMA/alcohol domains can give rise to doubled TMA dimer rows in two different configurations, as well as a tripled-TMA row. The boundaries created between non-aligned domains can create geometries that stabilize TMA bonding configurations not observed on surfaces without TMA/alcohol SAMNs, including small regions of the previously predicted 'super flower' TMA bonding geometry and a tertiary structure related to the known TMA phases. These structures are identified as part of a homologic class of TMA bonding motifs, and we explore some of the reasons for the stabilization of these phases in our multicomponent system.
Resumo:
The formation of ordered arrays of molecules via self-assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self-assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self-assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non-epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker-interacting epitaxial graphene films, and on non-epitaxial graphene transferred onto a host substrate, self-assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self-assembly on a wide range of surfaces.
Resumo:
Recently, halogen···halogen interactions have been demonstrated to stabilize two-dimensional supramolecular assemblies at the liquid–solid interface. Here we study the effect of changing the halogen, and report on the 2D supramolecular structures obtained by the adsorption of 2,4,6-tris(4-bromophenyl)-1,3,5-triazine (TBPT) and 2,4,6-tris(4-iodophenyl)-1,3,5-triazine (TIPT) on both highly oriented pyrolytic graphite and the (111) facet of a gold single crystal. These molecular systems were investigated by combining room-temperature scanning tunneling microscopy in ambient conditions with density functional theory, and are compared to results reported in the literature for the similar molecules 1,3,5-tri(4-bromophenyl)benzene (TBPB) and 1,3,5-tri(4-iodophenyl)benzene (TIPB). We find that the substrate exerts a much stronger effect than the nature of the halogen atoms in the molecular building blocks. Our results indicate that the triazine core, which renders TBPT and TIPT stiff and planar, leads to stronger adsorption energies and hence structures that are different from those found for TBPB and TIPB. On the reconstructed Au(111) surface we find that the TBPT network is sensitive to the fcc- and hcp-stacked regions, indicating a significant substrate effect. This makes TBPT the first molecule reported to form a continuous monolayer at room temperature in which molecular packing is altered on the differently reconstructed regions of the Au(111) surface. Solvent-dependent polymorphs with solvent coadsorption were observed for TBPT on HOPG. This is the first example of a multicomponent self-assembled molecular networks involving the rare cyclic, hydrogen-bonded hexamer of carboxylic groups, R66(24) synthon.
Resumo:
Biotechnology has the potential to improve sugar cane, one of the world's major crops for food and fuel. This research describes the detailed characterisation of introns and their potential for enhancing transgene expression in sugar cane via intron-mediated enhancement (IME). IME is a phenomenon whereby an intron enhances gene expression from a promoter. Current knowledge on the mechanism of IME or its potential for enhancing gene expression in sugar cane is limited. A better understanding of the factors responsible for IME will help develop new molecular tools that facilitate high levels of constitutive and tissue-specific gene expression in this crop.
Resumo:
There is an urgent need to develop crops that can withstand future climates. Results from this thesis demonstrated that a native Australian resurrection grass exhibits structural, physiological and metabolic strategies to tolerate drying. These strategies may be utilized for the generation of stress tolerant crops.
Resumo:
Prostate cancer is a leading contributor to male cancer-related deaths worldwide. Kallikrein-related peptidases (KLKs) are serine proteases that exhibit deregulated expression in prostate cancer, with KLK3, or prostate specific antigen (PSA), being the widely-employed clinical biomarker for prostate cancer. Other KLKs, such as KLK2, show promise as prostate cancer biomarkers and, additionally, their altered expression has been utilised for the design of KLK-targeted therapies. There is also a large body of in vitro and in vivo evidence supporting their role in cancer-related processes. Here, we review the literature on studies to date investigating the potential of other KLKs, in addition to PSA, as biomarkers and in therapeutic options, as well as their current known functional roles in cancer progression. Increased knowledge of these KLK-mediated functions, including degradation of the extracellular matrix, local invasion, cancer cell proliferation, interactions with fibroblasts, angiogenesis, migration, bone metastasis and tumour growth in vivo, may help define new roles as prognostic biomarkers and novel therapeutic targets for this cancer.
Resumo:
Generation of effective immune responses against pathogenic microbes depends on a fine balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) is essential in regulating this balance and has garnered renewed interest recently as a modulator of the response to infection at the JAK-STAT signaling axis of host responses. Here, we examine how IL-10 functions as the “master regulator” of immune responses through JAK-STAT, and provide a perspective from recent insights on bacterial, protozoan, and viral infection model systems. Pattern recognition and subsequent molecular events that drive activation of IL-10-associated JAK-STAT circuitry are reviewed and the implications for microbial pathogenesis are discussed.
Resumo:
We report the analysis of 335 microsatellite markers genotyped in 110 multiplex families with autism. All families include at least two "affected" siblings, at least one of whom has autism; the remaining affected sibs carry diagnoses of either Asperger syndrome or pervasive developmental disorder. Affected sib-pair analysis yielded multipoint maximum LOD scores (MLS) that reach the accepted threshold for suggestive linkage on chromosomes 5, X, and 19. Nominal evidence for linkage (point-wise P<.05) was obtained on chromosomes 2, 3, 4, 8, 10, 11, 12, 15, 16, 18, and 20, and secondary loci were found on chromosomes 5 and 19. Analysis of families sharing alleles at the putative X chromosomal linked locus and one or more other putative linked loci produced an MLS of 3.56 for the DXS470-D19S174 marker combination. In an effort to increase power to detect linkage, scan statistics were used to evaluate the significance of peak LOD scores based on statistical evidence at adjacent marker loci. This analysis yielded impressive evidence for linkage to autism and autism-spectrum disorders with significant genomewide P values <.05 for markers on chromosomes 5 and 8 and with suggestive linkage evidence for a marker on chromosome 19.
Resumo:
Linkage with essential hypertension has been claimed for a microsatellite marker near the angiotensinogen gene (AGT; chromosome 1q42), as has association for the AGT variants M235T, G(-6)A and A(-20)C. To more rigorously evaluate AGT as a candidate gene for hypertension we performed sibpair analysis with multiple microsatellite markers surrounding this locus and using more sophisticated analysis programs. We also performed an association study of the AGT variants in unrelated subjects with a strong family history (two affected parents). For the linkage study, single and multiplex polymerase chain reaction (PCRs) and automated genescan analysis were conducted on DNA from 175 Australian Anglo-Celtic Caucasian hypertensives for the following markers: D1S2880-(2.1 cM)-D1S213-(2.8 cM)-D1S251-(6.5 cM)-AGT-(2.0 cM) -D1S235. Statistical evaluation of genotype data by nonparametric methods resulted in the following scores: Single-point analysis - SPLINK, P > 0.18; APM method, P > 0.25; ASPEX, MLOD < 0.28; SIB-PAIR, P > 0. 24; Multipoint analysis - MAPMAKER/SIBS, MLOD < 0.24; GENEHUNTER, P > 0.35. Exclusion scores of Lod -4.1 to -5.1 were obtained for these markers using MAPMAKER/SIBS for a lambda(s) of 1.6. The association study of G(-6)A, A(-20)C and M235T variants in 111 hypertensives with strong family history and 190 normotensives with no family history showed significant linkage disequilibrium between particular haplotypes, but we could find no association with hypertension. The present study therefore excludes AGT in the etiology of hypertension, at least in the population of Australian Anglo-Celtic Caucasians studied.
Resumo:
Objectives In 2012, the National Institute for Health and Care Excellence assessed dasatinib, nilotinib, and standard-dose imatinib as first-line treatment of chronic phase chronic myelogenous leukemia (CML). Licensing of these alternative treatments was based on randomized controlled trials assessing complete cytogenetic response (CCyR) and major molecular response (MMR) at 12 months as primary end points. We use this case study to illustrate the validation of CCyR and MMR as surrogate outcomes for overall survival in CML and how this evidence was used to inform National Institute for Health and Care Excellence’s recommendation on the public funding of these first-line treatments for CML. Methods We undertook a systematic review and meta-analysis to quantify the association between CCyR and MMR at 12 months and overall survival in patients with chronic phase CML. We estimated life expectancy by extrapolating long-term survival from the weighted overall survival stratified according to the achievement of CCyR and MMR. Results Five studies provided data on the observational association between CCyR or MMR and overall survival. Based on the pooled association between CCyR and MMR and overall survival, our modeling showed comparable predicted mean duration of survival (21–23 years) following first-line treatment with imatinib, dasatinib, or nilotinib. Conclusions This case study illustrates the consideration of surrogate outcome evidence in health technology assessment. Although it is often recommended that the acceptance of surrogate outcomes be based on randomized controlled trial data demonstrating an association between the treatment effect on both the surrogate outcome and the final outcome, this case study shows that policymakers may be willing to accept a lower level of evidence (i.e., observational association).
Resumo:
Few-layer graphene films were grown by chemical vapor deposition and transferred onto n-type crystalline silicon wafers to fabricate graphene/n-silicon Schottky barrier solar cells. In order to increase the power conversion efficiency of such cells the graphene films were doped with nitric acid vapor and an antireflection treatment was implemented to reduce the sunlight reflection on the top of the device. The doping process increased the work function of the graphene film and had a beneficial effect on its conductivity. The deposition of a double antireflection coating led to an external quantum efficiency up to 90% across the visible and near infrared region, the highest ever reported for this type of devices. The combined effect of graphene doping and antireflection treatment allowed to reach a power conversion efficiency of 8.5% exceeding the pristine (undoped and uncoated) device performance by a factor of 4. The optical properties of the antireflection coating were found to be not affected by the exposure to nitric acid vapor and to remain stable over time.
Resumo:
The vacuolating autotransporter (AT) toxin (Vat) contributes to Uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here we characterised Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, 73 and 95) and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator, which we termed vatX. The vat-vatX genes were present in the UPEC reference strain CFT073 and RT-PCR revealed both genes are co-transcribed. Over-expression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator H-NS; thus the hns gene was mutated in CFT073 (to generate CFT073hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073hns compared to wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic SPATE secreted by UPEC during infection.
Resumo:
Two oxazolidine-2-thiones, thio-analogs of linezolid, were synthesized and their antibacterial properties evaluated. Unlike oxazolidinones, the thio-analogs did not inhibit the growth of Gram positive bacteria. A molecular modeling study has been carried out to aid understanding of this unexpected finding.
Resumo:
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell−cell adhesion. PECAM-1 has been shown to mediate cell−cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.