399 resultados para Double cantilever beam test
Resumo:
In Arabidopsis thaliana (Arabidopsis), DICER-LIKE1 (DCL1) functions together with the double-stranded RNA binding protein (dsRBP), DRB1, to process microRNAs (miRNAs) from their precursor transcripts prior to their transfer to the RNA-induced silencing complex (RISC). miRNA-loaded RISC directs RNA silencing of cognate mRNAs via ARGONAUTE1 (AGO1)-catalyzed cleavage. Short interefering RNAs (siRNAs) are processed from viral-derived or transgene-encoded molecules of doublestranded RNA (dsRNA) by the DCL/dsRBP partnership, DCL4/DRB4, and are also loaded to AGO1-catalyzed RISC for cleavage of complementary mRNAs. Here, we use an artificial miRNA (amiRNA) technology, transiently expressed in Nicotiana benthamiana, to produce a series of amiRNA duplexes with differing intermolecular thermostabilities at the 5′ end of duplex strands. Analyses of amiRNA duplex strand accumulation and target transcript expression revealed that strand selection (amiRNA and amiRNA*) is directed by asymmetric thermostability of the duplex termini. The duplex strand possessing a lower 59 thermostability was preferentially retained by RISC to guide mRNA cleavage of the corresponding target transgene. In addition, analysis of endogenous miRNA duplex strand accumulation in Arabidopsis drb1 and drb2345 mutant plants revealed that DRB1 dictates strand selection, presumably by directional loading of the miRNA duplex onto RISC for passenger strand degradation. Bioinformatic and Northern blot analyses of DCL4/DRB4-dependent small RNAs (miRNAs and siRNAs) revealed that small RNAs produced by this DCL/dsRBP combination do not conform to the same terminal thermostability rules as those governing DCL1/DRB1-processed miRNAs. This suggests that small RNA processing in the DCL1/DRB1-directed miRNA and DCL4/DRB4-directed sRNA biogenesis pathways operates via different mechanisms.
Resumo:
Plants fight viral infections with enzymes that digest viral RNA, but viruses retaliate with proteins that suppress these enzymes. To boost their antiviral response plants deploy enzymes with redundant functions.
Resumo:
Understanding people's organ donation decisions may narrow the gap between organ supply and demand. In two studies, participants who had not recorded their posthumous organ donation decision (Study 1, N = 210; Study 2, N = 307) completed items assessing prototype/willingness model (PWM; attitude, subjective norm, donor prototype favorability and similarity, willingness) constructs. Attitude, subjective norm, and prototype similarity predicted willingness to donate. Prototype favorability and a Prototype Favorability × Similarity interaction predicted willingness (Study 2). These findings provide support for the PWM in altruistic health contexts, highlighting the importance of people's perceptions about organ donors in their donation decisions.
Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test
Resumo:
Although the tourism industry has been dramatically altered due to the Internet, there has been limited research published about international entrepreneurial values and Internet use in tourism firms. The findings of this study point to a relationship between the values of Internet-enabled international entrepreneurs in small-sized to medium-sized enterprises and the inclination of the firm to develop and initiate international activity. The findings of this study suggest that Internet-enabled tourism entrepreneurs share similar construct values. Two effective but underutilized qualitative methods were used in this study. The first method, repertory test, is an efficient technique for exploring constructs in decision making; the second method, laddering analysis, facilitates understanding of the perceived consequences and personal values guiding behaviour.
Resumo:
A test of the useful field of view was introduced more than two decades ago and was designed to reflect the visual difficulties that older adults experience with everyday tasks. Importantly, the useful field of view is one of the most extensively researched and promising predictor tests for a range of driving outcomes measures, including driving ability and crash risk, as well as other everyday tasks. Currently available commercial versions of the test can be administered using personal computers and measure speed of visual processing speed for rapid detection and localization of targets under conditions of divided visual attention and in the presence and absence of visual clutter. The test is believed to assess higher order cognitive abilities, but performance also relies on visual sensory function since targets must be visible in order to be attended to. The format of the useful field of view test has been modified over the years; the original version estimated the spatial extent of useful field of view, while the latest versions measures visual processing speed. While deficits in the useful field of view are associated with functional impairments in everyday activities in older adults, there is also emerging evidence from several research groups that improvements in visual processing speed can be achieved through training. These improvements have been shown to reduce crash risk, and have a positive impact on health and functional well being, with the potential to increase the mobility and hence independence of older adults.
Resumo:
This essay examines the possibilities for practices that appeal to the primitive in the contemporary cultural context. The idea of the primitive is driven by a desire to challenge the limitations of Western culture, while at the same time attracting the charge of promoting Eurocentrism. This essay investigates this double risk and how artists have sought to evade it, confound it, or accentuate it.
Resumo:
This paper emphasizes material nonlinear effects on composite beams with recourse to the plastic hinge method. Numerous combinations of steel and concrete sections form arbitrary composite sections. Secondly, the material properties of composite beams vary remarkably across its section from ductile steel to brittle concrete. Thirdly, concrete is weak in tension, so composite section changes are dependent on load distribution. To this end, the plastic zone approach is convenient for inelastic analysis of composite sections that can evaluate member resistance, including material nonlinearities, by routine numerical integration with respect to every fiber across the composite section. As a result, many researchers usually adopt the plastic zone approach for numerical inelastic analyses of composite structures. On the other hand, the plastic hinge method describes nonlinear material behaviour of an overall composite section integrally. Consequently, proper section properties for use in plastic hinge spring stiffness are required to represent the material behaviour across the arbitrary whole composite section. In view of numerical efficiency and convergence, the plastic hinge method is superior to the plastic zone method. Therefore, based on the plastic hinge approach, how to incorporate the material nonlinearities of the arbitrary composite section into the plastic hinge stiffness formulation becomes a prime objective of the present paper. The partial shear connection in this paper is by virtue of the effective flexural rigidity as AISC 1993 [American Institute of Steel Construction (AISC). Load and resistance factor design specifications. 2nd ed., Chicago; 1993]. Nonlinear behaviour of different kinds of composite beam is investigated in this paper, including two simply supported composite beams, a cantilever and a two span continuous composite beam.
Resumo:
The extracellular matrix (ECM) provides a framework for cells and gives skin its tensile strength and elasticity. Loss of its integrity necessitates the clearing of damaged components and the deposition of firstly a provisional matrix and later remodelling of the ECM to support a functionally intact tissue. Matrix metalloproteinases (MMPs) are an important family of enzymes that function in the breakdown of the ECM and modulate the function of many biologically active molecules housed in the ECM. Through their enzymatic actions MMPs play a role in fundamental processes such as immune cell infiltration and ECM remodelling during wound repair. Their tight control is necessary for timely wound healing and excessive MMP activity participates in the development and persistence of chronic wounds, while reduced activity contributes to fibrosis. A number of inhibitors have been designed to target this activity and improve wound healing with limited success. Novel strategies are currently being investigated to improve wound healing by targeting MMP modulating molecules.
Resumo:
Importance Approximately one-third of patients with peripheral artery disease experience intermittent claudication, with consequent loss of quality of life. Objective To determine the efficacy of ramipril for improving walking ability, patient-perceived walking performance, and quality of life in patients with claudication. Design, Setting, and Patients Randomized, double-blind, placebo-controlled trial conducted among 212 patients with peripheral artery disease (mean age, 65.5 [SD, 6.2] years), initiated in May 2008 and completed in August 2011 and conducted at 3 hospitals in Australia. Intervention Patients were randomized to receive 10 mg/d of ramipril (n = 106) or matching placebo (n = 106) for 24 weeks. Main Outcome Measures Maximum and pain-free walking times were recorded during a standard treadmill test. The Walking Impairment Questionnaire (WIQ) and Short-Form 36 Health Survey (SF-36) were used to assess walking ability and quality of life, respectively. Results At 6 months, relative to placebo, ramipril was associated with a 75-second (95% CI, 60-89 seconds) increase in mean pain-free walking time (P < .001) and a 255-second (95% CI, 215-295 seconds) increase in maximum walking time (P < .001). Relative to placebo, ramipril improved the WIQ median distance score by 13.8 (Hodges-Lehmann 95% CI, 12.2-15.5), speed score by 13.3 (95% CI, 11.9-15.2), and stair climbing score by 25.2 (95% CI, 25.1-29.4) (P < .001 for all). The overall SF-36 median Physical Component Summary score improved by 8.2 (Hodges-Lehmann 95% CI, 3.6-11.4; P = .02) in the ramipril group relative to placebo. Ramipril did not affect the overall SF-36 median Mental Component Summary score. Conclusions and Relevance Among patients with intermittent claudication, 24-week treatment with ramipril resulted in significant increases in pain-free and maximum treadmill walking times compared with placebo. This was associated with a significant increase in the physical functioning component of the SF-36 score. Trial Registration clinicaltrials.gov Identifier: NCT00681226
Resumo:
Genomic instability underlies the transformation of host cells toward malignancy, promotes development of invasion and metastasis and shapes the response of established cancer to treatment. In this review, we discuss recent advances in our understanding of genomic stability in squamous cell carcinoma of the head and neck (HNSCC), with an emphasis on DNA repair pathways. HNSCC is characterized by distinct profiles in genome stability between similarly staged cancers that are reflected in risk, treatment response and outcomes. Defective DNA repair generates chromosomal derangement that can cause subsequent alterations in gene expression, and is a hallmark of progression toward carcinoma. Variable functionality of an increasing spectrum of repair gene polymorphisms is associated with increased cancer risk, while aetiological factors such as human papillomavirus, tobacco and alcohol induce significantly different behaviour in induced malignancy, underpinned by differences in genomic stability. Targeted inhibition of signalling receptors has proven to be a clinically-validated therapy, and protein expression of other DNA repair and signalling molecules associated with cancer behaviour could potentially provide a more refined clinical model for prognosis and treatment prediction. Development and expansion of current genomic stability models is furthering our understanding of HNSCC pathophysiology and uncovering new, promising treatment strategies. © 2013 Glenn Jenkins et al.
Resumo:
Background Indigenous children in high-income countries have a heavy burden of bronchiectasis unrelated to cystic fibrosis. We aimed to establish whether long-term azithromycin reduced pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. Methods Between Nov 12, 2008, and Dec 23, 2010, we enrolled Indigenous Australian, Maori, and Pacific Island children aged 1—8 years with either bronchiectasis or chronic suppurative lung disease into a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial. Eligible children had had at least one pulmonary exacerbation in the previous 12 months. Children were randomised (1:1 ratio, by computer-generated sequence with permuted block design, stratified by study site and exacerbation frequency [1—2 vs ≥3 episodes in the preceding 12 months]) to receive either azithromycin (30 mg/kg) or placebo once a week for up to 24 months. Allocation concealment was achieved by double-sealed, opaque envelopes; participants, caregivers, and study personnel were masked to assignment until after data analysis. The primary outcome was exacerbation (respiratory episodes treated with antibiotics) rate. Analysis of the primary endpoint was by intention to treat. At enrolment and at their final clinic visits, children had deep nasal swabs collected, which we analysed for antibiotic-resistant bacteria. This study is registered with the Australian New Zealand Clinical Trials Registry; ACTRN12610000383066. Findings 45 children were assigned to azithromycin and 44 to placebo. The study was stopped early for feasibility reasons on Dec 31, 2011, thus children received the intervention for 12—24 months. The mean treatment duration was 20·7 months (SD 5·7), with a total of 902 child-months in the azithromycin group and 875 child-months in the placebo group. Compared with the placebo group, children receiving azithromycin had significantly lower exacerbation rates (incidence rate ratio 0·50; 95% CI 0·35—0·71; p<0·0001). However, children in the azithromycin group developed significantly higher carriage of azithromycin-resistant bacteria (19 of 41, 46%) than those receiving placebo (four of 37, 11%; p=0·002). The most common adverse events were non-pulmonary infections (71 of 112 events in the azithromycin group vs 132 of 209 events in the placebo group) and bronchiectasis-related events (episodes or investigations; 22 of 112 events in the azithromycin group vs 48 of 209 events in the placebo group); however, study drugs were well tolerated with no serious adverse events being attributed to the intervention. Interpretation Once-weekly azithromycin for up to 24 months decreased pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. However, this strategy was also accompanied by increased carriage of azithromycin-resistant bacteria, the clinical consequences of which are uncertain, and will need careful monitoring and further study.
Resumo:
IEEE 802.11p is the new standard for intervehicular communications (IVC) using the 5.9 GHz frequency band; it is planned to be widely deployed to enable cooperative systems. 802.11p uses and performance have been studied theoretically and in simulations over the past years. Unfortunately, many of these results have not been confirmed by on-tracks experimentation. In this paper, we describe field trials of 802.11p technology with our test vehicles; metrics such as maximum range, latency and frame loss are examined. Then, we propose a detailed modelisation of 802.11p that can be used to accurately simulate its performance within Cooperative Systems (CS) applications.
Resumo:
The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.