315 resultados para Data-driven modelling
Resumo:
Quantum-like models can be fruitfully used to model attitude change in a social context. Next steps require data, and higher dimensional models. Here, we discuss an exploratory study that demonstrates an order effect when three question sets about Climate Beliefs, Political Affiliation and Attitudes Towards Science are presented in different orders within a larger study of n=533 subjects. A quantum-like model seems possible, and we propose a new experiment which could be used to test between three possible models for this scenario.
Resumo:
Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.
Resumo:
This research is a step forward in improving the accuracy of detecting anomaly in a data graph representing connectivity between people in an online social network. The proposed hybrid methods are based on fuzzy machine learning techniques utilising different types of structural input features. The methods are presented within a multi-layered framework which provides the full requirements needed for finding anomalies in data graphs generated from online social networks, including data modelling and analysis, labelling, and evaluation.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
The aim of this paper is to obtain the momentum transfer coefficient between the two phases, denoted by f and p, occupying a bi-disperse porous medium by mapping the available experimental data to the theoretical model proposed by Nield and Kuznetsov. Data pertinent to plate-fin heat exchangers, as bi-disperse porous media, were used. The measured pressure drops for such heat exchangers are then used to give the overall permeability which is linked to the porosity and permeability of each phase as well as the interfacial momentum transfer coefficient between the two phases. Accordingly, numerical values are obtained for the momentum transfer coefficient for three different fin spacing values considered in the heat exchanger experiments.
Resumo:
This paper uses transaction cost theory to study cloud computing adoption. A model is developed and tested with data from an Australian survey. According to the results, perceived vendor opportunism and perceived legislative uncertainty around cloud computing were significantly associated with perceived cloud computing security risk. There was also a significant negative relationship between perceived cloud computing security risk and the intention to adopt cloud services. This study also reports on adoption rates of cloud computing in terms of applications, as well as the types of services used.
Resumo:
During fracture healing, many complex and cryptic interactions occur between cells and bio-chemical molecules to bring about repair of damaged bone. In this thesis two mathematical models were developed, concerning the cellular differentiation of osteoblasts (bone forming cells) and the mineralisation of new bone tissue, allowing new insights into these processes. These models were mathematically analysed and simulated numerically, yielding results consistent with experimental data and highlighting the underlying pattern formation structure in these aspects of fracture healing.
Resumo:
In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.
Resumo:
This research aims to explore and identify political risks on a large infrastructure project in an exaggerated environment to ascertain whether sufficient objective information can be gathered by project managers to utilise risk modelling techniques. During the study, the author proposes a new definition of political risk; performs a detailed project study of the Neelum Jhelum Hydroelectric Project in Pakistan; implements a probabilistic model using the principle of decomposition and Bayes probabilistic theorem and answers the question: was it possible for project managers to obtain all the relevant objective data to implement a probabilistic model?
Resumo:
Monitoring the environment with acoustic sensors is an effective method for understanding changes in ecosystems. Through extensive monitoring, large-scale, ecologically relevant, datasets can be produced that can inform environmental policy. The collection of acoustic sensor data is a solved problem; the current challenge is the management and analysis of raw audio data to produce useful datasets for ecologists. This paper presents the applied research we use to analyze big acoustic datasets. Its core contribution is the presentation of practical large-scale acoustic data analysis methodologies. We describe details of the data workflows we use to provide both citizen scientists and researchers practical access to large volumes of ecoacoustic data. Finally, we propose a work in progress large-scale architecture for analysis driven by a hybrid cloud-and-local production-grade website.
Resumo:
A numerical study is carried out to investigate the transition from laminar to chaos in mixed convection heat transfer inside a lid-driven trapezoidal enclosure. In this study, the top wall is considered as isothermal cold surface, which is moving in its own plane at a constant speed, and a constant high temperature is provided at the bottom surface. The enclosure is assumed to be filled with water-Al2O3 nanofluid. The governing Navier–Stokes and thermal energy equations are expressed in non-dimensional forms and are solved using Galerkin finite element method. Attention is paid in the present study on the pure mixed convection regime at Richandson number, Ri = 1. The numerical simulations are carried out over a wide range of Reynolds (0.1 ≤ Re ≤ 103) and Grashof (0.01 ≤ Gr ≤ 106) numbers. Effects of the presence of nanofluid on the characteristics of mixed convection heat transfer are also explored. The average Nusselt numbers of the heated wall are computed to demonstrate the influence of flow parameter variations on heat transfer. The corresponding change of flow and thermal fields is visualized from the streamline and the isotherm contour plots.
Resumo:
Background Although the detrimental impact of major depressive disorder (MDD) at the individual level has been described, its global epidemiology remains unclear given limitations in the data. Here we present the modelled epidemiological profile of MDD dealing with heterogeneity in the data, enforcing internal consistency between epidemiological parameters and making estimates for world regions with no empirical data. These estimates were used to quantify the burden of MDD for the Global Burden of Disease Study 2010 (GBD 2010). Method Analyses drew on data from our existing literature review of the epidemiology of MDD. DisMod-MR, the latest version of the generic disease modelling system redesigned as a Bayesian meta-regression tool, derived prevalence by age, year and sex for 21 regions. Prior epidemiological knowledge, study- and country-level covariates adjusted sub-optimal raw data. Results There were over 298 million cases of MDD globally at any point in time in 2010, with the highest proportion of cases occurring between 25 and 34 years. Global point prevalence was very similar across time (4.4% (95% uncertainty: 4.2–4.7%) in 1990, 4.4% (4.1–4.7%) in 2005 and 2010), but higher in females (5.5% (5.0–6.0%) compared to males (3.2% (3.0–3.6%) in 2010. Regions in conflict had higher prevalence than those with no conflict. The annual incidence of an episode of MDD followed a similar age and regional pattern to prevalence but was about one and a half times higher, consistent with an average duration of 37.7 weeks. Conclusion We were able to integrate available data, including those from high quality surveys and sub-optimal studies, into a model adjusting for known methodological sources of heterogeneity. We were also able to estimate the epidemiology of MDD in regions with no available data. This informed GBD 2010 and the public health field, with a clearer understanding of the global distribution of MDD.
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.
Resumo:
Hydrogeophysics is a growing discipline that holds significant promise to help elucidate details of dynamic processes in the near surface, built on the ability of geophysical methods to measure properties from which hydrological and geochemical variables can be derived. For example, bulk electrical conductivity is governed by, amongst others, interstitial water content, fluid salinity, and temperature, and can be measured using a range of geophysical methods. In many cases, electrical resistivity tomography (ERT) is well suited to characterize these properties in multiple dimensions and to monitor dynamic processes, such as water infiltration and solute transport. In recent years, ERT has been used increasingly for ecosystem research in a wide range of settings; in particular to characterize vegetation-driven changes in root-zone and near-surface water dynamics. This increased popularity is due to operational factors (e.g., improved equipment, low site impact), data considerations (e.g., excellent repeatability), and the fact that ERT operates at scales significantly larger than traditional point sensors. Current limitations to a more widespread use of the approach include the high equipment costs, and the need for site-specific petrophysical relationships between properties of interest. In this presentation we will discuss recent equipment advances and theoretical and methodological aspects involved in the accurate estimation of soil moisture from ERT results. Examples will be presented from two studies in a temperate climate (Michigan, USA) and one from a humid tropical location (Tapajos, Brazil).
Resumo:
This paper addresses research from a three-year longitudinal study that engaged children in data modeling experiences from the beginning school year through to third year (6-8 years). A data modeling approach to statistical development differs in several ways from what is typically done in early classroom experiences with data. In particular, data modeling immerses children in problems that evolve from their own questions and reasoning, with core statistical foundations established early. These foundations include a focus on posing and refining statistical questions within and across contexts, structuring and representing data, making informal inferences, and developing conceptual, representational, and metarepresentational competence. Examples are presented of how young learners developed and sustained informal inferential reasoning and metarepresentational competence across the study to become “sophisticated statisticians”.