333 resultados para Alternation formation devices
Resumo:
MoS2 nanotube bundles along with embedded nested fullerenes were formed in a gas phase reaction of molybdenum carbonyl and H2S gas with the assistance of I2. The amorphous Mo-S-I intermediates obtained through quenching a modified MOCVD reaction in a large temperature gradient were annealed at elevated temperature in an inert atmosphere. Under the influence of the iodine the amorphous precursor formed a surface film with an enhanced mobility of the molybdenum and sulfur components. Point defects within the MoS2 layers combined with the enhanced surface diffusion lead to a scrolling of the inherently instable MoS2 lamellae.
Resumo:
We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm/s in human epidermis and less than 37 nm/s in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.
Resumo:
Nowadays, integration of small-scale electricity generators, known as Distributed Generation (DG), into distribution networks has become increasingly popular. This tendency together with the falling price of DG units has a great potential in giving the DG a better chance to participate in voltage regulation process, in parallel with other regulating devices already available in the distribution systems. The voltage control issue turns out to be a very challenging problem for distribution engineers, since existing control coordination schemes need to be reconsidered to take into account the DG operation. In this paper, a control coordination approach is proposed, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimize the interaction of DG with another DG or other active devices, such as On-load Tap Changing Transformer (OLTC). The proposed technique has been developed based on the concepts of protection principles (magnitude grading and time grading) for response coordination of DG and other regulating devices and uses Advanced Line Drop Compensators (ALDCs) for implementation. A distribution feeder with tap changing transformer and DG units has been extracted from a practical system to test the proposed control technique. The results show that the proposed method provides an effective solution for coordination of DG with another DG or voltage regulating devices and the integration of protection principles has considerably reduced the control interaction to achieve the desired voltage correction.
Resumo:
Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries
Resumo:
Literate practices and identities matter, those of both students and their teachers. There is considerable research exploring the discursive construction of students’ literacy practices and identities and the discursively mediated identities of literacy and English teachers. As Moje and Luke (2009) note, how identity is viewed influences and is influenced by the way literacy is viewed. Teachers’ literate identities and conceptualisations of literacy shape what counts as literacy in their classrooms, but also frame, shape and often limit students’ identities, both as readers and as writers (Hall, 2012).
Resumo:
Electric distribution networks are now in the era of transition from passive to active distribution networks with the integration of energy storage devices. Optimal usage of batteries and voltage control devices along with other upgrades in network needs a distribution expansion planning (DEP) considering inter-temporal dependencies of stages. This paper presents an efficient approach for solving multi-stage distribution expansion planning problems (MSDEPP) based on a forward-backward approach considering energy storage devices such as batteries and voltage control devices such as voltage regulators and capacitors. The proposed algorithm is compared with three other techniques including full dynamic, forward fill-in, backward pull-out from the point of view of their precision and their computational efficiency. The simulation results for the IEEE 13 bus network show the proposed pseudo-dynamic forward-backward approach presents good efficiency in precision and time of optimization.
Resumo:
Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.
Understanding the mechanisms of graft union formation in solanaceae plants using in vitro techniques
Resumo:
AIM The aim of this evidence-based practice (EBP) project was to promote adherence to the current best practice in monitoring and optimal replacement of peripheral intravenous device (PIVD). METHODS This EBP project took place in a 30-bed acute general surgical ward. Twenty in-patients with PIVD in situ for 4 days or more were recruited. There were five stages in the project: identification of EBP topic, criteria, sample and setting; baseline; dissemination of baseline audit results and identification of best practice barriers; identification of barriers to EBP and implementation of strategies promoting EBP; and postimplementation audit. RESULTS There were eight criteria in this project. The first audit showed moderate compliance in PIVD monitoring and optimal replacement. The project identified three barriers: lack of awareness of the current evidence-based guidelines, hospital policy not being aligned with current guidelines and no standard form of documentation. In order to overcome these barriers the following strategies were used: audit and feedback, interactive educational meetings, reminders and hospital policy change. The second audit showed minor improvements in each criterion. Compliance with documentation remained a challenge, possibly because of the lack of standardised documentation. DISCUSSION Although the project did not render us the results we aimed for, it was successful because it highlighted the current EBP in PIVD management. The major challenges of the project were time and the lack of opinion leaders in our project team. We felt that more time was needed to adapt to the practice change and standardised documentation could not be developed in such a short time period. Further, the role of the opinion leader proved to be vital in this project. We felt that had we recruited more than one opinion leader, the results would have been different.