556 resultados para 3D Distribution


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a combined subtransmission and distribution reliability analysis of SEQEB’s outer suburban network is presented. The reliability analysis was carried out with a commercial software package which evaluates both energy and customer indices. Various reinforcement options were investigated to ascertain the impact they have on the reliability of supply seen by the customers. The customer and energy indices produced by the combined subtransmission and distribution reliability studies contributed to optimise capital expenditure to the most effective areas of the network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical investigation on mixed convection of a two-dimensional incompressible laminar flow over a horizontal flat plate with streamwise sinusoidal distribution of surface temperature has been performed for different values of Rayleigh number, Reynolds number and frequency of periodic temperature for constant Prandtl number and amplitude of periodic temperature. Finite element method adapted to rectangular non-uniform mesh elements by a non-linear parametric solution algorithm basis numerical scheme has been employed. The investigating parameters are the Rayleigh number, the Reynolds number and frequency of periodic temperature. The effect of variation of individual investigating parameters on mixed convection flow characteristics has been studied to observe the hydrodynamic and thermal behavior for while keeping the other parameters constant. The fluid considered in this study is air with Prandtl number 0.72. The results are obtained for the Rayleigh number range of 102 to 104, Reynolds number ranging from 1 to 100 and the frequency of periodic temperature from 1 to 5. Isotherms, streamlines, average and local Nusselt numbers are presented to show the effect of the different values of aforementioned investigating parameters on fluid flow and heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pairwise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighboring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighboring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A video detailing our new virtual world BPMN process modelling tool developed by Erik Poppe. Enables better situational awareness via use of remotely connected avatars and a shared 3D process diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video detailing three process model visualisation configurations integrated into an agent driven virtual world simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding complex systems within the human body presents a unique challenge for medical engineers and health practitioners. One significant issue is the ability to communicate their research findings to audiences with limited medical knowledge or understanding of the behaviour and composition of such structures. Much of what is known about the human body is currently communicated through abstract representations which include raw data sets, hand drawn illustrations or cellular automata. The development of 3D Computer Graphics Animation has provided a new medium for communicating these abstract concepts to audiences in new ways. This paper presents an approach for the visualisation of human articular cartilage deterioration using 3D Computer Graphics Animation. The animated outcome of this research introduces the complex interior structure of human cartilage to audiences with limited medical engineering knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel intelligent online demand side management system is proposed for peak load management in low-voltage distribution networks. This method uses low-cost controllers with low-bandwidth two-way communication installed in custumers’ premises and at distribution transformers to manage the peak load while maximising customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by simulation of three different feeder types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of ventilation distribution is currently performed using inhaled tracer gases for multiple breath inhalation studies or imaging techniques to quantify spatial gas distribution. Most tracer gases used for these studies have properties different from that of air. The effect of gas density on regional ventilation distribution has not been studied. This study aimed to measure the effect of gas density on regional ventilation distribution. Methods Ventilation distribution was measured in seven rats using electrical impedance tomography (EIT) in supine, prone, left and right lateral positions while being mechanically ventilated with either air, heliox (30% oxygen, 70% helium) or sulfur hexafluoride (20% SF6, 20% oxygen, 60% air). The effect of gas density on regional ventilation distribution was assessed. Results Gas density did not impact on regional ventilation distribution. The non-dependent lung was better ventilated in all four body positions. Gas density had no further impact on regional filling characteristics. The filling characteristics followed an anatomical pattern with the anterior and left lung showing a greater impedance change during the initial phase of the inspiration. Conclusion It was shown that gas density did not impact on convection dependent ventilation distribution in rats measured with EIT.