336 resultados para 0105 Mathematical Physics


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent and average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas, the shrinkage dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three dimensional temperature and moisture profiles show that even when the surface is dry, inside of the sample may still contain large amount of moisture. Therefore, drying process should be carefully dealt with otherwise microbial spoilage may start from the centre of the ‘dried’ food. A parametric investigation has been conducted after the validation of the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs--Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs--Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed for undergraduate and postgraduate students, academic researchers and industrial practitioners, this book provides comprehensive case studies on numerical computing of industrial processes and step-by-step procedures for conducting industrial computing. It assumes minimal knowledge in numerical computing and computer programming, making it easy to read, understand and follow. Topics discussed include fundamentals of industrial computing, finite difference methods, the Wavelet-Collocation Method, the Wavelet-Galerkin Method, High Resolution Methods, and comparative studies of various methods. These are discussed using examples of carefully selected models from real processes of industrial significance. The step-by-step procedures in all these case studies can be easily applied to other industrial processes without a need for major changes and thus provide readers with useful frameworks for the applications of engineering computing in fundamental research problems and practical development scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove the existence of novel, shock-fronted travelling wave solutions to a model of wound healing angiogenesis studied in Pettet et al (2000 IMA J. Math. App. Med. 17 395–413) assuming two conjectures hold. In the previous work, the authors showed that for certain parameter values, a heteroclinic orbit in the phase plane representing a smooth travelling wave solution exists. However, upon varying one of the parameters, the heteroclinic orbit was destroyed, or rather cut-off, by a wall of singularities in the phase plane. As a result, they concluded that under this parameter regime no travelling wave solutions existed. Using techniques from geometric singular perturbation theory and canard theory, we show that a travelling wave solution actually still exists for this parameter regime. We construct a heteroclinic orbit passing through the wall of singularities via a folded saddle canard point onto a repelling slow manifold. The orbit leaves this manifold via the fast dynamics and lands on the attracting slow manifold, finally connecting to its end state. This new travelling wave is no longer smooth but exhibits a sharp front or shock. Finally, we identify regions in parameter space where we expect that similar solutions exist. Moreover, we discuss the possibility of more exotic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During fracture healing, many complex and cryptic interactions occur between cells and bio-chemical molecules to bring about repair of damaged bone. In this thesis two mathematical models were developed, concerning the cellular differentiation of osteoblasts (bone forming cells) and the mineralisation of new bone tissue, allowing new insights into these processes. These models were mathematically analysed and simulated numerically, yielding results consistent with experimental data and highlighting the underlying pattern formation structure in these aspects of fracture healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing train speeds is conceptually a simple and straight forward method to expand railway capacity, for example in comparison to other more extensive and elaborate alternatives. In this article an analytical capacity model has been investigated as a means of performing a sensitivity analysis of train speeds. The results of this sensitivity analysis can help improve the operation of this railway system and to help it cope with additional demands in the future. To test our approach a case study of the Rah Ahane Iran (RAI) national railway network has been selected. The absolute capacity levels for this railway network have been determined and the analysis shows that increasing trains speeds may not be entirely cost effective in all circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modelling of food processing is complex because it involves sophisticated material and transport phenomena. Most of the agricultural products such fruits and vegetables are hygroscopic porous media containing free water, bound water, gas and solid matrix. Considering all phase in modelling is still not developed. In this article, a comprehensive porous media model for drying has been developed considering bound water, free water separately, as well as water vapour and air. Free water transport was considered as diffusion, pressure driven and evaporation. Bound water assumed to be converted to free water due to concentration difference and also can diffuse. Binary diffusion between water vapour and air was considered. Since, the model is fundamental physics based it can be applied to any drying applications and other food processing where heat and mass transfer takes place in porous media with significant evaporation and other phase change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red blood cells (RBCs) are the most common type of cells in human blood and they exhibit different types of motions and deformed shapes in capillary flows. The behaviour of the RBCs should be studied in order to explain the RBC motion and deformation mechanism. This article presents a numerical simulation method for RBC deformation in microvessels. A two dimensional spring network model is used to represent the RBC membrane, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. The forces acting on the RBC membrane are obtained from the principle of virtual work. The whole fluid domain is discretized into a finite number of particles using smoothed particle hydrodynamics concepts and the motions of all the particles are solved using Navier--Stokes equations. Minimum energy concepts are used to simulate the deformed shape of the RBC model. To verify the model, the motion of a single RBC is simulated in a Poiseuille flow and the characteristic parachute shape of the RBC is observed. Further simulations reveal that the RBC shows a tank treading motion when it flows in a linear shear flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries