314 resultados para tendon healing
Resumo:
The lack of fundamental knowledge on the biological processes associated with wound healing represents a significant challenge. Understanding the biochemical changes that occur within a chronic wound could provide insights into the wound environment and enable more effective wound management. We report on the stability of wound fluid samples under various conditions and describe a high-throughput approach to investigate the altered biochemical state within wound samples collected from various types of chronic, ulcerated wounds. Furthermore, we discuss the viability of this approach in the early stages of wound sample protein and metabolite profiling and subsequent biomarker discovery. This approach will facilitate the detection of factors that may correlate with wound severity and/or could be used to monitor the response to a particular treatment.
Resumo:
Background: Epidermogenesis and epidermal wound healing are tightly regulated processes during which keratinocytes must migrate, proliferate and differentiate. Cell to cell adhesion is crucial to the initiation and regulation of these processes. CUB domain containing protein 1 (CDCP1) is a transmembrane glycoprotein that is differentially tyrosine phosphorylated during changes in cell adhesion and survival signalling and is expressed by keratinocytes in native human skin, as well as in primary cultures. Objectives: To investigate the expression of CDCP1 during epidermogenesis and its role in keratinocyte migration. Methods: We examined both human skin tissue and an in vitro three-dimensional human skin equivalent model to examine the expression of CDCP1 during epidermogenesis. To examine the role of CDCP1 in keratinocyte migration we used a function blocking anti-CDCP1 antibody and a real-time Transwell™ cell migration assay. Results: Immunohistochemical analysis indicated that in native human skin CDCP1 is expressed in the stratum basale and stratum spinosum. In contrast, during epidermogenesis in a 3-dimensional human skin equivalent model CDCP1 was expressed only in the stratum basale, with localization restricted to the cell-cell membrane. No expression was detected in basal keratinocytes that were in contact with the basement membrane. Further, an anti-CDCP1 function blocking antibody was shown to disrupt keratinocyte chemotactic migration in vitro. Conclusions: These findings delineate the expression of CDCP1 in human epidermal keratinocytes during epidermogenesis and demonstrate that CDCP1 is involved in keratinocyte migration.
Resumo:
Purpose: Eccentric exercise has become the treatment of choice for Achilles tendinopathy. However, little is known about the acute response of tendons to eccentric exercise or the mechanisms underlying its clinical benefit. This research evaluated the sonographic characteristics and acute anteroposterior (AP) strain response of control (healthy), asymptomatic, and symptomatic Achilles tendons to eccentric exercise. Methods: Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Sagittal sonograms of the Achilles tendon were acquired immediately before and after completion of a common eccentric rehabilitation exercise protocol and again 24 h later. Tendon thickness, echogenicity, and AP strain were determined 40 mm proximal to the calcaneal insertion. Results: Compared with the control tendon, both the asymptomatic and symptomatic tendons were thicker (P < 0.05) and hypoechoic (P < 0.05) at baseline. All tendons decreased in thickness immediately after eccentric exercise (P < 0.05). The symptomatic tendon was characterized by a significantly lower AP strain response to eccentric exercise compared with both the asymptomatic and control tendons (P < 0.05). AP strains did not differ in the control and asymptomatic tendons. For all tendons, preexercise thickness was restored 24 h after exercise completion. Conclusions: These observations support the concept that Achilles tendinopathy is a bilateral or systemic process and structural changes associated with symptomatic tendinopathy alter fluid movement within the tendon matrix. Altered fluid movement may disrupt remodeling and homeostatic processes and represents a plausible mechanism underlying the progression of tendinopathy.
Resumo:
The concept of the cellular glycoprotein vitronectin acts as a biological ‘glue’ and key controller of mammalian tissue repair and remodelling activity is emerging from nearly 50 years of experimental in vitro and in vivo data. Unexpectedly, the vitronectin-knock-out mouse was found to be viable and to have largely normal phenotype. However, diligent observation revealed that the VN-KO animal exhibits delayed coagulation and poor wound healing. This is interpreted to indicate that vitronectin occupies a role in the earliest events of thrombogenesis and tissue repair. That role is as a foundation upon which the thrombus grows in an organised structure. In addition to closing the wound, the thrombus also serves to protect the underlying tissue from oxidation, is a reservoir of mitogens and tissue repair mediators and provides a provisional scaffold for the repairing tissue. In the absence of vitronectin (e.g. VN-KO animal) this cascade is disrupted before it begins. Our data demonstrates that a wide variety of biologically active species associate with VN. While initial studies were focused on mitogens, other classes of bioactives (e.g. glycosaminoglycans, metalloproteinases) are now also known to specifically interact with VN. Many of these interactions are long-lived, often resulting in multi-protein complexes, while others are stable for prolonged periods. Multiprotein complexes provide several advantages: prolonging molecular interaction; sustaining local concentrations, facilitating co-stimulation of cell surface receptors and thereby enhancing cellular / biological responses. We contend that these, or equivalent, multi-protein complexes mediate vitronectin functionality in vivo. It is also likely that many of the species demonstrated to associate with vitronectin in vitro, also associate with vitronectin in vivo in similar multi-protein complexes. Thus the predominant biological function of vitronectin is that of a master controller of the extracellular environment; informing, and possibly instructing cells ‘where’ to behave, ‘when’ to behave, and ‘how’ to behave (i.e. appropriately for the current circumstance).
Resumo:
We investigated the potential of an extract of Lycopodium obscurum L.; stigmastane-3-oxo-21-oic acid (SA), to enhance osteogensis of mouse osteoblastic MC3T3-E1 cells. SA at a concentration of 16 µM was found to have no significant effect upon the viability of the cells, thus concentrations of 8 µM and 16 µM of SA were used in all further experiments. Both concentrations of SA had an inhibitory affect upon alkaline phosphatase activity (ALP) after 8 days incubation, however, after 16 days activity was restored to control levels. However Alizarin red S staining showed increased levels of mineralization for both concentrations after 16 days culture. Real time PCR showed inhibition of genes Runx2 and Osterix genes responsible for the up-regulation of ALP. However early time point (8 days) up-regulation of bone matrix mineralization genes OPN and OCN, and late time point (16 days) up-regulation of both Jun-D and Fra-2 mRNA expression was significantly enhanced. These results suggest a potential me-chanism of SA in enhancing bone fracture healing is through the up-regulating bone matrix minera-lization.
Resumo:
Wound debridement refers to the removal of necrotic, devitalized, or contaminated tissue and/or foreign material to promote wound healing. Surgical debridement uses sharp instruments to cut dead tissue from a wound and it is the quickest and most efficient method of debridement. A wound debridement simulator [1,2] can ensure that a medical trainee is competent prior to performing a procedure on a genuine patient. Irrigation is performed at different stages of debridement in order to remove debris and reduce the bacteria count through rinsing the wound. This paper presents a novel approach for realistic irrigation visualization based on texture representations of debris. This approach applies image processing techniques to a series of images, which model the cleanliness of the wound. The active texture is generated and updated dynamically based on the irrigation state, location, and range. Presented results demonstrate that texture mapping and image processing techniques can provide effective and efficient solutions for irrigation visualization in the wound debridement simulator.
Resumo:
This study aimed to assess the feasibility of a home-based exercise program and examine the effects on the healing rates of venous leg ulcers. A 12 –week randomised controlled trial was conducted investigating the effects of an exercise intervention compared to a usual care group. Participants in both groups (n = 13) had active venous ulceration and were treated in a metropolitan hospital outpatients clinic in Australia. Data were collected on recruitment from medical records, clinical assessment and questionnaires. Follow-up data on progress in healing and treatments were collected fortnightly for 12 weeks. Calf muscle pump function data were collected at baseline and 12 weeks from recruitment. Range of ankle motion data were collected at baseline, 6 and 12 weeks from recruitment. This pilot study indicated that the intervention was feasible. Clinical significance was observed in the intervention group with a 32% greater decrease in ulcer size (p=0.34) than the control group, and a 10% (p=0.74) improvement in the number of participants healed in the intervention group compared to the control group. Significant differences between groups over time were observed in calf muscle pump function parameters; (ejection fraction [p = 0.05]; residual volume fraction [p = 0.04]) and range of ankle motion (p = 0.01). This pilot study is one of the first studies to examine and measure clinical healing rates for participants involved in a home-based progressive resistance exercise program. Further research is warranted with a larger multi-site study.
Resumo:
Intracellular Flightless I (Flii), a gelsolin family member, has been found to have roles modulating actin regulation, transcriptional regulation and inflammation. In vivo Flii can regulate wound healing responses. We have recently shown that a pool of Flii is secreted by fibroblasts and macrophages, cells typically found in wounds, and its secretion can be upregulated upon wounding. We show that secreted Flii can bind to the bacterial cell wall component lipopolysaccharide and has the potential to regulate inflammation. We now show that secreted Flii is present in both acute and chronic wound fluid.
Resumo:
Chronic venous leg ulcers are a major health issue and represent an often overlooked area of biomedical research. Nevertheless, it is becoming increasingly evident that new approaches to enhance healing outcomes may arise through better understanding the processes involved in the formation of chronic wounds. We have for the first time shown that the terminal purine catabolite uric acid (UA) is elevated in wound fluid (WF) from chronic venous leg ulcers with relative concentrations correlating with wound chronicity. We have also shown a corresponding depletion in UA precursors, including adenosine, with increased wound severity. Further, we have shown that xanthine oxidase, the only enzyme in humans that catalyses the production of UA in conjunction with a burst of free radicals, is active in chronic WF. Taken together, this provides compelling evidence that xanthine oxidase may play a critical role in the formation of chronic wounds by prolonging the inflammatory process.
Resumo:
Wound research is a complex multidimensional activity most effectively conducted by inter-disciplinary teams that connect studies in basic wound biology, devices and biomaterials with clinical practice. These complexities have been recognised in a new initiative through the establishment of an inter-disciplinary wound research centre in Australia; the Wound Management Innovation Cooperative Research Centre (WMI CRC). The centre is funded by the Australian Government's Cooperative Research Centre Program and a consortium of 22 participants and has a resource of US$108 million over 8 years...
Resumo:
Moving fronts of cells are essential features of embryonic development, wound repair and cancer metastasis. This paper describes a set of experiments to investigate the roles of random motility and proliferation in driving the spread of an initially confined cell population. The experiments include an analysis of cell spreading when proliferation was inhibited. Our data have been analysed using two mathematical models: a lattice-based discrete model and a related continuum partial differential equation model. We obtain independent estimates of the random motility parameter, D, and the intrinsic proliferation rate, λ, and we confirm that these estimates lead to accurate modelling predictions of the position of the leading edge of the moving front as well as the evolution of the cell density profiles. Previous work suggests that systems with a high λ/D ratio will be characterized by steep fronts, whereas systems with a low λ/D ratio will lead to shallow diffuse fronts and this is confirmed in the present study. Our results provide evidence that continuum models, based on the Fisher–Kolmogorov equation, are a reliable platform upon which we can interpret and predict such experimental observations.
Resumo:
Background: Chronic leg ulcers cause long term ill-health for older adults and the condition places a significant burden on health service resources. Although evidence on effective management of the condition is available, a significant evidence-practice gap is known to exist, with many suggested reasons e.g. multiple care providers, costs of care and treatments. This study aimed to identify effective health service pathways of care which facilitated evidence-based management of chronic leg ulcers. Methods: A sample of 70 patients presenting with a lower limb leg or foot ulcer at specialist wound clinics in Queensland, Australia were recruited for an observational study and survey. Retrospective data were collected on demographics, health, medical history, treatments, costs and health service pathways in the previous 12 months. Prospective data were collected on health service pathways, pain, functional ability, quality of life, treatments, wound healing and recurrence outcomes for 24 weeks from admission. Results: Retrospective data indicated that evidence based guidelines were poorly implemented prior to admission to the study, e.g. only 31% of participants with a lower limb ulcer had an ABPI or duplex assessment in the previous 12 months. On average, participants accessed care 2–3 times/week for 17 weeks from multiple health service providers in the twelve months before admission to the study clinics. Following admission to specialist wound clinics, participants accessed care on average once per week for 12 weeks from a smaller range of providers. The median ulcer duration on admission to the study was 22 weeks (range 2–728 weeks). Following admission to wound clinics, implementation of key indicators of evidence based care increased (p<0.001) and Kaplan-Meier survival analysis found the median time to healing was 12 weeks (95% CI 9.3–14.7). Implementation of evidence based care was significantly related to improved healing outcomes (p<0.001). Conclusions: This study highlights the complexities involved in accessing expertise and evidence based wound care for adults with chronic leg or foot ulcers. Results demonstrate that access to wound management expertise can promote streamlined health services and evidence based wound care, leading to efficient use of health resources and improved health.
Resumo:
The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.
Resumo:
Objective: To determine the prevalence, severity, location, etiology, treatment, and healing of medical device-related pressure ulcers in intensive care patients for up to 7 days. Design: Prospective repeated measures study. Setting and participants: Patients in 6 intensive care units of 2 major medical centers, one each in Australia and the United States, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily up to 7 days. Outcome measures: Device-related ulcer prevalence, pain, infection, treatment, healing. Results: 15/483 patients had device-related ulcers and 9/15 with 11 ulcers were followed beyond screening. Their mean age was 60.5 years, most were men, over-weight, and at increased pressure ulcer risk. Endotracheal and nasogastric tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. 4/11 ulcers healed within the 7 day observation period. Conclusion: Device-related ulcer prevalence was 3.1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with nasogastric and endotracheal tubes.
Resumo:
Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.