675 resultados para non-violent protests
Resumo:
There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.
Resumo:
Fire safety of buildings has been recognised as very important by the building industry and the community at large. Traditionally, increased fire rating is provided by simply adding more plasterboards to light gauge steel frame (LSF) walls, which is inefficient. Many research studies have been undertaken to investigate the thermal behaviour of traditional LSF stud wall systems under standard fire conditions. However, no research has been undertaken on the thermal behaviour of LSF stud walls using the recently proposed composite panel. Extensive fire testing of both non-load bearing and load bearing wall panels was conducted in this research based on the standard time-temperature curve in AS1530.4. Three groups of LSF wall specimens were tested with no insulation, cavity insulation and the new composite panel based on an external insulation layer between plasterboards. This paper presents the details of this experimental study into the thermal performance of non-load bearing walls lined with various configurations of plasterboard and insulation. Extensive descriptive and numerical results of the tested non-load bearing wall panels given in this paper provide a thorough understanding of their thermal behaviour, and valuable time-temperature data that can be used to validate numerical models. Test results showed that the innovative composite stud wall systems outperformed the traditional stud wall systems in terms of their thermal performance, giving a much higher fire rating.
Resumo:
Non-state insurgent actors are too weak to compel powerful adversaries to their will, so they use violence to coerce. A principal objective is to grow and sustain violent resistance to the point that it either militarily challenges the state, or more commonly, generates unacceptable political costs. To survive, insurgents must shift popular support away from the state and to grow they must secure it. State actor policies and actions perceived as illegitimate and oppressive by the insurgent constituency can generate these shifts. A promising insurgent strategy is to attack states in ways that lead angry publics and leaders to discount the historically established risks and take flawed but popular decisions to use repressive measures. Such decisions may be enabled by a visceral belief in the power of coercion and selective use of examples of where robust measures have indeed suppressed resistance. To avoid such counterproductive behaviours the cases of apparent 'successful repression' must be understood. This thesis tests whether robust state action is correlated with reduced support for insurgents, analyses the causal mechanisms of such shifts and examines whether such reduction is because of compulsion or coercion? The approach is founded on prior research by the RAND Corporation which analysed the 30 insurgencies most recently resolved worldwide to determine factors of counterinsurgent success. This new study first re-analyses their data at a finer resolution with new queries that investigate the relationship between repression and insurgent active support. Having determined that, in general, repression does not correlate with decreased insurgent support, this study then analyses two cases in which the data suggests repression seems likely to be reducing insurgent support: the PKK in Turkey and the insurgency against the Vietnamese-sponsored regime after their ousting of the Khmer Rouge. It applies 'structured-focused' case analysis with questions partly built from the insurgency model of Leites and Wolf, who are associated with the advocacy of US robust means in Vietnam. This is thus a test of 'most difficult' cases using a 'least likely' test model. Nevertheless, the findings refute the deterrence argument of 'iron fist' advocates. Robust approaches may physically prevent effective support of insurgents but they do not coercively deter people from being willing to actively support the insurgency.
Resumo:
This paper presents a feasible 3D collision avoidance approach for fixed-wing unmanned aerial vehicles (UAVs). The proposed strategy aims to achieve the desired relative bearing in the horizontal plane and relative elevation in the vertical plane so that the host aircraft is able to avoid collision with the intruder aircraft in 3D. The host aircraft will follow a desired trajectory in the collision avoidance course and resume the pre-arranged trajectory after collision is avoided. The approaching stopping condition is determined for the host aircraft to trigger an evasion maneuver to avoid collision in terms of measured heading. A switching controller is designed to achieve the spatial collision avoidance strategy. Simulation results demonstrate that the proposed approach can effectively avoid spatial collision, making it suitable for integration into flight control systems of UAVs.
Resumo:
The objective of this study was to identify key factors differentiating between exporters and non-exporters in the Chilean wine industry. Based on survey data collected from 61 wineries, the findings show that the main barriers for non-exporters are the lack of financial resources, limited quantities of stock for market expansion, management’s lack of knowledge and experience, and the high cost of travelling and participating in trade shows. The results also show that managers have educational levels and international experience exceeding those of other comparable New World wineries. Finally, in developing their main international markets, Chilean wineries did not target psychically close markets as identified in previous wine industry studies
Resumo:
This paper reports on the development and implementation of a self-report risk assessment tool that was developed in an attempt to increase the efficacy of crash prediction within Australian fleet settings. This study forms a part of a broader program of research into work related road safety and identification of driving risk. The first phase of the study involved a series of focus groups being conducted with 217 professional drivers which revealed that the following factors were proposed to influence driving performance: Fatigue, Knowledge of risk, Mood, Impatience and frustration, Speed limits, Experience, Other road users, Passengers, Health, and Culture. The second phase of the study involved piloting the newly developed 38 item Driving Risk Assessment Scale - Work Version (DRAS-WV) with 546 professional drivers. Factor analytic techniques identified a 9 factor solution that was comprised of speeding, aggression, time pressure, distraction, casualness, awareness, maintenance, fatigue and minor damage. Speeding and aggressive driving manoeuvres were identified to be the most frequent aberrant driving behaviours engaged in by the sample. However, a series of logistic regression analyses undertaken to determine the DRAS-WV scale’s ability to predict self-reported crashes revealed limited predictive efficacy e.g., 10% of crashes. This paper outlines proposed reasons for this limited predictive ability of the DRAS-WV as well as provides suggestions regarding the future of research that aims to develop methods to identify “at risk” drivers.
Resumo:
The security of power transfer across a given transmission link is typically a steady state assessment. This paper develops tools to assess machine angle stability as affected by a combination of faults and uncertainty of wind power using probability analysis. The paper elaborates on the development of the theoretical assessment tool and demonstrates its efficacy using single machine infinite bus system.
Resumo:
The decision in ASIC v Managed Investments Ltd No 3 [2012] QSC 74 provides practitioners with useful guidance on the relationship between the privileges against self-incrimination and exposure to a penalty, and the UCPR requirements for denials and non-admissions.
Resumo:
Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS
Resumo:
Corals inhabit high energy environments where frequent disturbances result in physical damage to coralla, including fragmentation, as well as generating and mobilizing large sediment clasts. The branching growth form common in the Acropora genus makes it particularly susceptible to such disturbances and therefore useful for study of the fate of large sediment clasts. Living Acropora samples with natural, extraneous, broken coral branches incorporated on their living surface and dead Acropora skeletons containing embedded clasts of isolated branch sections of Acropora were observed and/or collected from the reef flat of Heron Reef, southern Great Barrier Reef and Bargara, Australia respectively. Here we report three different outcomes when pebble-sized coral branches became lodged on living coral colonies during sedimentation events in natural settings in Acropora: 1) Where live coral branches produced during a disturbance event come to rest on probable genetic clone-mate colonies they become rapidly stabilised leading to complete soft tissue and skeletal fusion; 2) Where the branch and underlying colony are not clone-mates, but may still be the same or similar species, the branches still may be stabilised rapidly by soft tissue, but then one species will overgrow the other; and 3) Where branches represent dead skeletal debris, they are treated like any foreign clast and are surrounded by clypeotheca and incorporated into the corallum by overgrowth. The retention of branch fragments on colonies in high energy reef flat settings may suggest an active role of coral polyps to recognise and fuse with each other. Also, in all cases the healing of disturbed tissue and subsequent skeletal growth is an adaptation important for protecting colonies from invasion by parasites and other benthos following disturbance events and may also serve to increase corallum strength. Knowledge of such adaptations is important in studies of coral behaviour during periods of environmental stress.
Resumo:
Cognitive radio is an emerging technology proposing the concept of dynamic spec- trum access as a solution to the looming problem of spectrum scarcity caused by the growth in wireless communication systems. Under the proposed concept, non- licensed, secondary users (SU) can access spectrum owned by licensed, primary users (PU) so long as interference to PU are kept minimal. Spectrum sensing is a crucial task in cognitive radio whereby the SU senses the spectrum to detect the presence or absence of any PU signal. Conventional spectrum sensing assumes the PU signal as ‘stationary’ and remains in the same activity state during the sensing cycle, while an emerging trend models PU as ‘non-stationary’ and undergoes state changes. Existing studies have focused on non-stationary PU during the transmission period, however very little research considered the impact on spectrum sensing when the PU is non-stationary during the sensing period. The concept of PU duty cycle is developed as a tool to analyse the performance of spectrum sensing detectors when detecting non-stationary PU signals. New detectors are also proposed to optimise detection with respect to duty cycle ex- hibited by the PU. This research consists of two major investigations. The first stage investigates the impact of duty cycle on the performance of existing detec- tors and the extent of the problem in existing studies. The second stage develops new detection models and frameworks to ensure the integrity of spectrum sensing when detecting non-stationary PU signals. The first investigation demonstrates that conventional signal model formulated for stationary PU does not accurately reflect the behaviour of a non-stationary PU. Therefore the performance calculated and assumed to be achievable by the conventional detector does not reflect actual performance achieved. Through analysing the statistical properties of duty cycle, performance degradation is proved to be a problem that cannot be easily neglected in existing sensing studies when PU is modelled as non-stationary. The second investigation presents detectors that are aware of the duty cycle ex- hibited by a non-stationary PU. A two stage detection model is proposed to improve the detection performance and robustness to changes in duty cycle. This detector is most suitable for applications that require long sensing periods. A second detector, the duty cycle based energy detector is formulated by integrat- ing the distribution of duty cycle into the test statistic of the energy detector and suitable for short sensing periods. The decision threshold is optimised with respect to the traffic model of the PU, hence the proposed detector can calculate average detection performance that reflect realistic results. A detection framework for the application of spectrum sensing optimisation is proposed to provide clear guidance on the constraints on sensing and detection model. Following this framework will ensure the signal model accurately reflects practical behaviour while the detection model implemented is also suitable for the desired detection assumption. Based on this framework, a spectrum sensing optimisation algorithm is further developed to maximise the sensing efficiency for non-stationary PU. New optimisation constraints are derived to account for any PU state changes within the sensing cycle while implementing the proposed duty cycle based detector.
Resumo:
A proposal has been posted on the ICTV website (2011. 001aG. N. v1. binomial_sp_names) to replace virus species names by non-Latinized binomial names consisting of the current italicized species name with the terminal word "virus" replaced by the italicized and non-capitalized genus name to which the species belongs. If implemented, the current italicized species name Measles virus, for instance, would become Measles morbillivirus while the current virus name measles virus and its abbreviation MeV would remain unchanged. The rationale for the proposed change is presented. © 2010 Springer-Verlag.
Resumo:
• Road crashes as a cause of disability • Disability in the study of road safety • Thai spinal injury study – Contextual information – beliefs and community – Transport system and hidden safety costs – Cambodia experience – Pakistan fatalism study • Feedback to policies and programs