333 resultados para environmental exposure
Resumo:
Following the success of Coalbed Natural Gas (CBNG) operations in the United States, companies in Australia and New Zealand have been actively exploring and developing this technology for the last two decades. In particular, the Bowen and Surat basins in Queensland, Australia, have undergone extensive CBNG development. Unfortunately, awareness of potential environmental problems associated with CBNG abstraction has not been widespread and legislation has at times struggled to keep up with rapid development. In Australia, the combined CBNG resource for both the Bowen and Surat basins has been estimated at approximately 10,500 PJ with gas content as high as 10 m3/tonne of coal. There are no official estimates for the magnitude of the CBNG resource in New Zealand but initial estimates suggest this could be up to 1,300 PJ with gas content ranging from 1 to 5 m3/tonne of coal. In Queensland, depressurization of the Walloon Coal Measures to recover CBNG has the potential to induce drawdown in adjacent deep aquifer systems through intraformational groundwater flow. In addition, CBNG operators have been disposing their co-produced water by using large unlined ponds, which is not the best practice for managing co-produced water. CBNG waters in Queensland have the typical geochemical signature associated with CBNG waters (Van Voast, 2003) and thus have the potential to impair soils and plant growth where land disposal is considered. Water quality from exploration wells in New Zealand exhibit the same characteristics although full scale production has not yet begun. In general, the environmental impacts that could arise from CBNG water extraction depend on the aquifer system, the quantity and quality of produced water, and on the method of treatment and disposal being used. Understanding these impacts is necessary to adequately manage CBNG waters so that environmental effects are minimized; if properly managed, CBNG waters can be used for beneficial applications and can become a valuable resource to stakeholders.
Resumo:
Predicting safety on roadways is standard practice for road safety professionals and has a corresponding extensive literature. The majority of safety prediction models are estimated using roadway segment and intersection (microscale) data, while more recently efforts have been undertaken to predict safety at the planning level (macroscale). Safety prediction models typically include roadway, operations, and exposure variables—factors known to affect safety in fundamental ways. Environmental variables, in particular variables attempting to capture the effect of rain on road safety, are difficult to obtain and have rarely been considered. In the few cases weather variables have been included, historical averages rather than actual weather conditions during which crashes are observed have been used. Without the inclusion of weather related variables researchers have had difficulty explaining regional differences in the safety performance of various entities (e.g. intersections, road segments, highways, etc.) As part of the NCHRP 8-44 research effort, researchers developed PLANSAFE, or planning level safety prediction models. These models make use of socio-economic, demographic, and roadway variables for predicting planning level safety. Accounting for regional differences - similar to the experience for microscale safety models - has been problematic during the development of planning level safety prediction models. More specifically, without weather related variables there is an insufficient set of variables for explaining safety differences across regions and states. Furthermore, omitted variable bias resulting from excluding these important variables may adversely impact the coefficients of included variables, thus contributing to difficulty in model interpretation and accuracy. This paper summarizes the results of an effort to include weather related variables, particularly various measures of rainfall, into accident frequency prediction and the prediction of the frequency of fatal and/or injury degree of severity crash models. The purpose of the study was to determine whether these variables do in fact improve overall goodness of fit of the models, whether these variables may explain some or all of observed regional differences, and identifying the estimated effects of rainfall on safety. The models are based on Traffic Analysis Zone level datasets from Michigan, and Pima and Maricopa Counties in Arizona. Numerous rain-related variables were found to be statistically significant, selected rain related variables improved the overall goodness of fit, and inclusion of these variables reduced the portion of the model explained by the constant in the base models without weather variables. Rain tends to diminish safety, as expected, in fairly complex ways, depending on rain frequency and intensity.
Resumo:
Recent epidemiologic studies have suggested that ultraviolet radiation (UV) may protect against non-Hodgkin lymphoma (NHL), but few, if any, have assessed multiple indicators of ambient and personal UV exposure. Using the US Radiologic Technologists study, we examined the association between NHL and self-reported time outdoors in summer, as well as average year-round and seasonal ambient exposures based on satellite estimates for different age periods, and sun susceptibility in participants who had responded to two questionnaires (1994–1998, 2003–2005) and who were cancer-free as of the earlier questionnaire. Using unconditional logistic regression, we estimated the odds ratio (OR) and 95% confidence intervals for 64,103 participants with 137 NHL cases. Self-reported time outdoors in summer was unrelated to risk. Lower risk was somewhat related to higher average year-round and winter ambient exposure for the period closest in time, and prior to, diagnosis (ages 20–39). Relative to 1.0 for the lowest quartile of average year-round ambient UV, the estimated OR for successively higher quartiles was 0.68 (0.42–1.10); 0.82 (0.52–1.29); and 0.64 (0.40–1.03), p-trend = 0.06), for this age period. The lower NHL risk associated with higher year-round average and winter ambient UV provides modest additional support for a protective relationship between UV and NHL.
Resumo:
Cutaneous cholecalciferol synthesis has not been considered in making recommendations for vitamin D intake. Our objective was to model the effects of sun exposure, vitamin D intake, and skin reflectance (pigmentation) on serum 25-hydroxyvitamin D (25[OH]D) in young adults with a wide range of skin reflectance and sun exposure. Four cohorts of participants (n = 72 total) were studied for 7-8 wk in the fall, winter, spring, and summer in Davis, CA [38.5° N, 121.7° W, Elev. 49 ft (15 m)]. Skin reflectance was measured using a spectrophotometer, vitamin D intake using food records, and sun exposure using polysulfone dosimeter badges. A multiple regression model (R^sup 2^ = 0.55; P < 0.0001) was developed and used to predict the serum 25(OH)D concentration for participants with low [median for African ancestry (AA)] and high [median for European ancestry (EA)] skin reflectance and with low [20th percentile, ~20 min/d, ~18% body surface area (BSA) exposed] and high (80th percentile, ~90 min/d, ~35% BSA exposed) sun exposure, assuming an intake of 200 IU/d (5 ug/d). Predicted serum 25(OH)D concentrations for AA individuals with low and high sun exposure in the winter were 24 and 42 nmol/L and in the summer were 40 and 60 nmol/L. Corresponding values for EA individuals were 35 and 60 nmol/L in the winter and in the summer were 58 and 85 nmol/L. To achieve 25(OH)D ≥75 nmol/L, we estimate that EA individuals with high sun exposure need 1300 IU/d vitamin D intake in the winter and AA individuals with low sun exposure need 2100-3100 IU/d year-round.
Resumo:
Reports on the work of a group of primary educators who participated in the collaborative practitioner inquiry stage of River Literacies, and explores what happened when a group of teachers made a serious commitment to rethink and extend the repertoires ofmulti- modal literacy for use with their students.
Resumo:
Introduction: Excessive exposure to ultraviolet (UV) radiation from sunlight is a causative factor in the development of skin damage and skin cancer. Little research has been undertaken into assessing the sun exposure linking to skin damage inside buildings or behind window glass. This project directly addressed this issue by aiming to assess the role that UV exposure has on skin damage for indoor workers and drivers. Methods: Measurements of personal UV exposure using UV sensitive polymer dosimeters were undertaken of 41 indoor workers and 3 professional drivers. Physical measurements of skin characteristics including skin pigmentation and UV induced skin photoaging were also determined. In addition, demographic information along with phenotypic characteristics, sun exposure and sun protection practice history, and history of skin damage were assessed through a questionnaire. Results: Indoor workers typically received low doses of UV radiation. However, one driver received a high dose (13J/cm2 UVA and 4.99 MED UVB on the arm). Age and years residing in Australia had a positive correlation with UV induced skin pigmentation. The number of major sunburns before 18 years was a risk factor for skin damage in adults. Those participants with fair skin, non-black hair and blue/green /blue-grey eye were more likely to have skin damage related to sun exposure. Conclusions: A person’s age, years residing in Australia, numbers of major sunburn, skin colour, hair colour and eye colour are important factors associated with the development of sun-related skin damage in workers. ‘Real World’ implications: 1. The number of major sunburns before 18 years was a risk factor for skin damage in adults. This clearly confirms the importance of early prevention. To protect the skin from extensive sun exposure for your generation should have significance for further prevention of skin damage. 2. It is unsurprising that age and years residing in Australia were associated with skin damage related UV radiation. Therefore, the general public should reinforce their sun protective measures and check skin regularly. 3. Drivers should take sun protective measures during their working hours between sunrise and sunset.
Resumo:
Reactive oxygen species (ROS) and related free radicals are considered to be key factors underpinning the various adverse health effects associated with exposure to ambient particulate matter. Therefore, measurement of ROS is a crucial factor for assessing the potential toxicity of particles. In this work, a novel profluorescent nitroxide, BPEAnit, was investigated as a probe for detecting particle-derived ROS. BPEAnit has a very low fluorescence emission due to inherent quenching by the nitroxide group, but upon radical trapping or redox activity, a strong fluorescence is observed. BPEAnit was tested for detection of ROS present in mainstream and sidestream cigarette smoke. In the case of mainstream cigarette smoke, there was a linear increase in fluorescence intensity with an increasing number of cigarette puffs, equivalent to an average of 101 nmol ROS per cigarette based on the number of moles of the probe reacted. Sidestream cigarette smoke sampled from an environmental chamber exposed BPEAnit to much lower concentrations of particles, but still resulted in a clearly detectible increase in fluorescence intensity with sampling time. It was calculated that the amount of ROS was equivalent to 50 ± 2 nmol per mg of particulate matter; however, this value decreased with ageing of the particles in the chamber. Overall, BPEAnit was shown to provide a sensitive response related to the oxidative capacity of the particulate matter. These findings present a good basis for employing the new BPEAnit probe for the investigation of particle-related ROS generated from cigarette smoke as well as from other combustion sources.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.
Resumo:
The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect
Resumo:
Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.
Resumo:
A total of 214 rainwater samples from 82 tanks were collected in urban Southeast Queensland (SEQ) in Australia and analysed for the zoonotic bacterial and protozoan pathogen using real-time binary PCR and quantitative PCR (qPCR). Quantitative Microbial Risk Assessment (QMRA) analysis was used to quantify the risk of infection associated with the exposure to potential pathogens from potable and non-potable uses of roof-harvested rainwater. Of the 214 samples tested, 10.7%, 9.8%, and 5.6%, and 0.4% samples were positive for Salmonella invA, Giardia lamblia β-giardin , Legionella pneumophila mip, and Campylobacter jejuni mapA genes. Cryptosporidium parvum could not be detected. The estimated numbers of viable Salmonella spp., G. lamblia β-giradin, and L. pneumophila genes ranged from 1.6 × 101 to 9.5 × 101 cells, 1.4 × 10-1 to 9.0 × 10-1 cysts, and 1.5 × 101 to 4.3 × 101 per 1000 ml of water, respectively. Six risk scenarios were considered from exposure to Salmonella spp., G. lamblia and L. pneumophila. For Salmonella spp., and G. lamblia, these scenarios were: (1) liquid ingestion due to drinking of rainwater on a daily basis (2) accidental liquid ingestion due to garden hosing twice a week (3) aerosol ingestion due to showering on a daily basis, and (4) aerosol ingestion due to hosing twice a week. For L. pneumophila, these scenarios were: (5) aerosol inhalation due to showering on a daily basis, and (6) aerosol inhalation due to hosing twice a week. The risk of infection from Salmonella spp., G. lamblia, and L. pneumophila associated with the use of rainwater for showering and garden hosing was calculated to be well below the threshold value of one extra infection per 10,000 persons per year in urban SEQ. However, the risk of infection from ingesting Salmonella spp. and G. lamblia via drinking exceeds this threshold value, and indicates that if undisinfected rainwater were ingested by drinking, then the gastrointestinal diseases of Salmonellosis and Giardiasis is expected to range from 5.0 × 100 to 2.8 × 101 (Salmonellosis) and 1.0 × 101 to 6.4 × 101 (Giardiasis) cases per 10,000 persons per year, respectively. Since this health risk seems higher than that expected from the reported incidences of gastroenteritis, the assumptions used to estimate these infection risks are critically examined. Nonetheless, it would seem prudent to disinfect rainwater for potable use.
Resumo:
Proactive communication management instead of mortification in the glare of hostile media attention became the theme of a four-day training program for multi-cultural community leaders, the object of this research. The program in Brisbane from December 2009 through to February this year was conducted under auspices of a Community Media Link grant program shared by Griffith University and the Queensland Ethnic Communities Council, together with Journalism academics from the Queensland University of Technology. Twenty-eight participants from 23 organisations took part, with a team of nine facilitators from the host organisations, and guest presenters from the news media. This paper reviews the process, taking into account: its objectives, to empower participants by showing how Australian media operate and introducing participants to journalists; pedagogical thrust, where overview talks, with role play seminars with guest presenters from the media, were combined with practice in interviews and writing for media; and outcomes, assessed on the basis of participants’ responses. The research methodology is qualitative, in that the study is based on discussions to review the planning and experience of sessions, and anonymous, informal feed-back questionnaires distributed to the participants. Background literature on multiculturalism and community media was referred to in the study. The findings indicate positive outcomes for participants from this approach to protection of persons unversed in living in the Australian “mediatised” environment. Most affirmed that the “production side” perspective of the exercise had informed and motivated them effectively, such that henceforth they would venture far more into media management, in their community leadership roles.