454 resultados para computer-supported creativity
Resumo:
Use of patient-specific computer models as a pre-operative planning tool permits predictions of the likely deformity correction and allows a more detailed investigation of the biomechanical influence of different surgical procedures on the scoliotic spinal anatomy. In this paper, patient-specific computer models are used of adolescent idiopathic scoliosis patients who underwent a single rod anterior procedure at the Mater Children’s Hospital in Brisbane, to predict deformity correction and to investigate the change in biomechanics of the scoliotic spine due to surgical compressive forces applied during implant placement.
Resumo:
This paper is a reflection on a design teaching project that endeavours to establish a culture of critical design thinking in a tertiary game design course. In the first instance, the ‘performing design’ project arose as a response to contemporary issues and tensions in the Australian games industry and game design education, in essence, the problem of how to scaffold undergraduate students from their entry point as ‘players’ (the impressed) into becoming designers. The performing design project therefore started as a small-scale intervention to inspire reflection in a wider debate that includes: the potential evolution of the contemporary games industry; the purpose of game design education; and the positioning of game design as a design discipline. Our position is that designing interactive playful works or games is victim of a tendency to simplify the discipline and view it from either the perspective of science or art. In this paper we look at some of the historical discussions on the distinct identity of games. Then we present an overview of the typical state of play in contemporary game design education which inspires the performing design project as an intervention or teaching technique. This leads us to question understandings of education and training and creativity and innovation. Finally we reflect on insights arising from the performing design project which lead us to support Archer’s call for a ‘third area’ that balances the monolithic practices of the two major academic disciplines.
Resumo:
Emergence is discussed in the context of a practice-based study of interactive art and a new taxonomy of emergence is proposed. The interactive art system ‘plus minus now’ is described and its relationship to emergence is discussed. ‘Plus minus now’ uses a novel method for instantiating emergent shapes. A preliminary investigation of this art system has been conducted and reveals the creation of temporal compositions by a participant. These temporal compositions and the emergent shapes are described using the taxonomy of emergence. Characteristics of emergent interactions and the implications of designing for them are discussed.
Resumo:
It is acknowledged around the world that many university students struggle with learning to program (McCracken et al., 2001; McGettrick et al., 2005). In this paper, we describe how we have developed a research programme to systematically study and incrementally improve our teaching. We have adopted a research programme with three elements: (1) a theory that provides an organising framework for defining the type of phenomena and data of interest, (2) data on how the class as a whole performs on formative assessment tasks that are framed from within the organising framework, and (3) data from one-on-one think aloud sessions, to establish why students struggle with some of those in-class formative assessment tasks. We teach introductory computer programming, but this three-element structure of our research is applicable to many areas of engineering education research.
Resumo:
Photocatalytic synthesis using visible light is a desirable chemical process because of its potential to utilize sunlight. Supported gold nanoparticles (Au-NPs) were found to be efficient photocatalysts and the effects of the supports were identified including CeO2, TiO2, ZrO2, Al2O3, and zeolite Y. In particular Au/CeO2 exhibited the high catalytic activity to reduce nitroaromatics to azo compounds, hydrogenate azobenzene to hydroazobenzene, reduce ketones to alcohols, and deoxygenate epoxides to alkenes at ambient temperatures, under irradiation of visible light (or simulated sunlight). The reac-tive efficiency depends on two primary factors: one is the light adsorption of catalysts and another is the driving ability of catalysts corresponding to the reactants. The light absorption by Au-NPs is due to surface plasmon resonance effect or inter-band electron transition; this is related to the reduction ability of the photocatalysts. Irradiation with shorter wavelengths can excite the conduction electrons in Au-NPs to higher energy levels and as a result, induce reduction with more negative reduction potentials. It is known when irradiated with light the Au-NPs can abstract hydrogen from isopropanol forming Au-H species on the Au-NP surface. Hence, we proposed that the active Au-H species will react with the N=O, N=N, C=O double bonds or epoxide bonds, which are weakened by the interaction with the excited electrons in the Au-NPs, and yield the final reductive products. The reacting power of the Au-H species depends on the energy of the excited electrons in Au-NPs: the higher the electronic energy, the stronger the reduction ability of the Au-H species. This finding demonstrates that we can tune the reduction ability of the photocatalysts by manipulating the irradiation wavelength.
Resumo:
New materials technology has provided the potential for the development of an innovative Hybrid Composite Floor Plate System (HCFPS) with many desirable properties, such as light weight, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fibre Reinforced Cement (GRC) and steel laminates at tensile regions. HCFPS is configured such that the positive inherent properties of individual component materials are combined to offset any weakness and achieve optimum performance. Research has been carried out using extensive Finite Element (FE) computer simulations supported by experimental testing. Both the strength and serviceability requirements have been established for this lightweight floor plate system. This paper presents some of the research towards the development of HCFPS along with a parametric study to select suitable span lengths.