297 resultados para axial gauges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fibre reinforced polymer (CFRP) strengthening of metallic structures under static loading has shown great potential in the recent years. However, steel structures are often experienced natural (e.g. earthquake, wind) as well as man-made (e.g. vehicular impact, blast) dynamic loading. Therefore, there is a growing interest among the researchers to investigate the capability of CFRP strengthened members under such dynamic conditions. This study focuses on the finite element (FE) numerical modelling and simulation of CFRP strengthened steel column under transverse impact loading to predict the behaviour and failure modes. Impact simulation process and the CFRP strengthened steel column are validated with the existing experimental results in literature. The validated FE model of CFRP strengthened steel column is then further used to investigate the effects of transverse impact loading on its structural performance. The results are presented in terms of transvers e impact force, lateral and axial displacement, and deformed shape to evaluate the effectiveness of CFRP strengthening technique. Comparisons between the bare steel and CFRP strengthened steel columns clearly indicate the performance enhancement of strengthened column under transverse impact loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strain-based failure criteria have several advantages over stress-based failure criteria: they can account for elastic and inelastic strains, they utilise direct, observables effects instead of inferred effects (strain gauges vs. stress estimates), and model complete stress-strain curves including pre-peak, non-linear elasticity and post-peak strain weakening. In this study, a strain-based failure criterion derived from thermodynamic first principles utilising the concepts of continuum damage mechanics is presented. Furthermore, implementation of this failure criterion into a finite-element simulation is demonstrated and applied to the stability of underground mining coal pillars. In numerical studies, pillar strength is usually expressed in terms of critical stresses or stress-based failure criteria where scaling with pillar width and height is common. Previous publications have employed the finite-element method for pillar stability analysis using stress-based failure criterion such as Mohr-Coulomb and Hoek-Brown or stress-based scalar damage models. A novel constitutive material model, which takes into consideration anisotropy as well as elastic strain and damage as state variables has been developed and is presented in this paper. The damage threshold and its evolution are strain-controlled, and coupling of the state variables is achieved through the damage-induced degradation of the elasticity tensor. This material model is implemented into the finite-element software ABAQUS and can be applied to 3D problems. Initial results show that this new material model is capable of describing the non-linear behaviour of geomaterials commonly observed before peak strength is reached as well as post-peak strain softening. Furthermore, it is demonstrated that the model can account for directional dependency of failure behaviour (i.e. anisotropy) and has the potential to be expanded to environmental controls like temperature or moisture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of tibia. Selection of the correct nail insertion point is important for axial alignment of bone fragments and to avoid iatrogenic fractures. However, the standard entry point (SEP) may not always optimise the bone-nail fit due to geometric variations of bones. This study aimed to investigate the optimal entry for a given bone-nail pair using the fit quantification software tool previously developed by the authors. The misfit was quantified for 20 bones with two nail designs (ETN and ETN-Proximal Bend) related to the SEP and 5 entry points which were 5 mm and 10 mm away from the SEP. The SEP was the optimal entry point for 50% of the bones used. For the remaining bones, the optimal entry point was located 5 mm away from the SEP, which improved the overall fit by 40% on average. However, entry points 10 mm away from the SEP doubled the misfit. The optimised bone-nail fit can be achieved through the SEP and within the range of a 5 mm radius, except posteriorly. The study results suggest that the optimal entry point should be selected by considering the fit during insertion and not only at the final position.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis examines the short-term changes occurring in a number of the eye's structures during reading tasks, and explores how these changes differ between normal eyes, and those with short-sightedness (myopia). This research revealed changes in the shape and thickness of a number of the eye's structures during near work, and aspects of these changes showed differences associated with myopia. These findings have potentially important implications for our understanding of the role of near work in the development and progression of myopia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the finite element modelling of structural frames, external loads such as wind loads, dead loads and imposed loads usually act along the elements rather than at the nodes only. Conventionally, when an element is subjected to these general transverse element loads, they are usually converted to nodal forces acting at the ends of the elements by either lumping or consistent load approaches. In addition, it is especially important for an element subjected to the first- and second-order elastic behaviour, to which the steel structure is critically prone to; in particular the thin-walled steel structures, when the stocky element section may be generally critical to the inelastic behaviour. In this sense, the accurate first- and second-order elastic displacement solutions of element load effect along an element is vitally crucial, but cannot be simulated using neither numerical nodal nor consistent load methods alone, as long as no equilibrium condition is enforced in the finite element formulation, which can inevitably impair the structural safety of the steel structure particularly. It can be therefore regarded as a unique element load method to account for the element load nonlinearly. If accurate displacement solution is targeted for simulating the first- and second-order elastic behaviour on an element on the basis of sophisticated non-linear element stiffness formulation, the numerous prescribed stiffness matrices must indispensably be used for the plethora of specific transverse element loading patterns encountered. In order to circumvent this shortcoming, the present paper proposes a numerical technique to include the transverse element loading in the non-linear stiffness formulation without numerous prescribed stiffness matrices, and which is able to predict structural responses involving the effect of first-order element loads as well as the second-order coupling effect between the transverse load and axial force in the element. This paper shows that the principle of superposition can be applied to derive the generalized stiffness formulation for element load effect, so that the form of the stiffness matrix remains unchanged with respect to the specific loading patterns, but with only the magnitude of the loading (element load coefficients) being needed to be adjusted in the stiffness formulation, and subsequently the non-linear effect on element loadings can be commensurate by updating the magnitude of element load coefficients through the non-linear solution procedures. In principle, the element loading distribution is converted into a single loading magnitude at mid-span in order to provide the initial perturbation for triggering the member bowing effect due to its transverse element loads. This approach in turn sacrifices the effect of element loading distribution except at mid-span. Therefore, it can be foreseen that the load-deflection behaviour may not be as accurate as those at mid-span, but its discrepancy is still trivial as proved. This novelty allows for a very useful generalised stiffness formulation for a single higher-order element with arbitrary transverse loading patterns to be formulated. Moreover, another significance of this paper is placed on shifting the nodal response (system analysis) to both nodal and element response (sophisticated element formulation). For the conventional finite element method, such as the cubic element, all accurate solutions can be only found at node. It means no accurate and reliable structural safety can be ensured within an element, and as a result, it hinders the engineering applications. The results of the paper are verified using analytical stability function studies, as well as with numerical results reported by independent researchers on several simple frames.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the details of an experimental study of cold-formed steel hollow section columns at ambient and elevated temperatures. In this study the global buckling behaviour of cold-formed Square Hollow Section (SHS) slender columns under axial compression was investigated at various uniform elevated temperatures up to 700℃. The results of these column tests are reported in this paper, which include the buckling/failure modes at elevated temperatures, and ultimate load versus temperature curves. Finite element models of tested columns were also developed and their behaviour and ultimate capacities at ambient and elevated temperatures were studied. Fire design rules given in European and American standards including the Direct Strength Method (DSM) based design rules were used to predict the ultimate capacities of tested columns at elevated temperatures. Elevated temperature mechanical properties and stress-strain models given in European steel design standards and past researches were used with design rules and finite element models to investigate their effects on SHS column capacities. Comparisons of column capacities from tests and finite element analyses with those predicted by current design rules were used to determine the accuracy of currently available column design rules in predicting the capacities of SHS columns at elevated temperatures and the need to use appropriate elevated temperature material stress-strain models. This paper presents the important findings derived from the comparisons of these column capacities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this study were (A) to record the inner prosthesis loading during activities of daily living (ADL), (B) to present a set of variables comparing loading data, and (C) to provide an example of characterisation of two prostheses. The load was measured at 200 Hz using a multi-axial transducer mounted between the residuum and the knee of an individual with unilateral transfemoral amputation fitted with a bone-anchored prosthesis. The load was measured while using two different prostheses including a mechanically (PRO1) and a microprocessor controlled (PRO2) knee during six ADL. The characterisation of prosthesis was achieved using a set of variables split into four categories, including temporal characteristics, maximum loading, loading slopes and impulse. Approximately 360 gait cycles were analysed for each prosthesis. PRO1 showed a cadence improved by 19% and 7%, a maximum force on the long axis reduced by 11% and 19%, as well as an impulse reduced by 32% and 15% during descent of incline and stairs compared to PRO2, respectively. This work confirmed that the proposed apparatus and characterisation can reveal how changes of prosthetic components are translated into inner loading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design: Comparative analysis Background: Calculations of lower limbs kinetics are limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Methods: Kinematics, ground reactions and knee reactions were collected using a motion analysis system, two force-plates and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reactions under-estimated the peaks of hip energy generation and absorption occurring at 63 % and 76 % of the gait cycle (GC) by 28 % and 54 %, respectively. This method over-estimated a phase of negative work at the hip (from 37 %GC to 56 %GC) by 24%. It under-estimated the phases of positive (from 57 %GC to 72 %GC) and negative (from 73 %GC to 98 %GC) work at the hip by 11 % and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without issues of foot placement on force-plates. CLINICAL RELEVANCE The hip is the only joint that an amputee controls directly to set in motion the prosthesis. Hip joint kinetics are associated with joint degeneration, low back pain, risks of fall, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the thickness of the invivo peripapillary choroid have been documented in a range of ocular conditions in adults; however, choroidal thickness in the peripapillary region of children has not been examined in detail. This study therefore aimed to investigate the thickness of the peripapillary choroid and the overlying retinal nerve fibre layer (RNFL) in a population of normal children with a range of refractive errors. Ninety-three children (37 myopes and 56 non-myopes) aged between 11 and 16 years, had measurements of peripapillary choroidal and RNFL thickness derived from enhanced depth imaging optical coherence tomography images (EDI-OCT, Heidelberg Spectralis). The average thickness was determined in a series of five 0.25 mm width concentric annuli (each divided into 8 equal sized 45° sectors) centred on the optic nerve head boundary, accounting for individual ocular magnification factors and the disc-fovea angle. Significant variations in peripapillary choroidal thickness were found to occur with both annulus location (p<0.001) and sector position (p<0.001) in this population of children. The innermost annulus (closest to the edge of the optic disc) exhibited the thinnest choroid (mean 77 ± 16 μm) and the outermost annulus, the thickest choroid (191 ± 52 μm). The choroid was thinnest inferior to the optic nerve head (139 ± 38 μm) and was thickest in the superior temporal sector (157 ± 40 μm). Significant differences in the distribution of choroidal thickness were also associated with myopia, with myopic children having significantly thinner choroids in the inner and outer annuli of the nasal and temporal sectors respectively (p<0.001). RNFL thickness also varied significantly with annulus location and sector (p<0.001), and showed differences in thickness distribution associated with refractive error. This study establishes the normal variations in the thickness of the peripapillary choroid with radial distance and azimuthal angle from the optic nerve head boundary. A significant thinning of the peripapillary choroid associated with myopia in childhood was also observed in both nasal and temporal regions. The changes in peripapillary RNFL and choroidal thickness associated with refractive error are consistent with a redistribution of these tissues occurring with myopic axial elongation in childhood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in nanomaterials/nanostructures offer the possibility of fabricating multifunctional materials for use in engineering applications. Carbon nanotube (CNT)-based nanostructures are a representative building block for these multifunctional materials. Based on a series of in silico studies, we investigated the possibility of tuning the thermal conductivity of a three-dimensional CNT-based nanostructure: a single-walled CNT-based super-nanotube. The thermal conductivity of the super-nanotubes was shown to vary with different connecting carbon rings and super-nanotubes with longer constituent single-walled CNTs and larger diameters had a smaller thermal conductivity. The inverse of the thermal conductivity of the super-nanotubes showed a good linear relationship with the inverse of the length. The thermal conductivity was approximately proportional to the inverse of the temperature, but was insensitive to the axial strain as a result of the Poisson ratio. These results provide a fundamental understanding of the thermal conductivity of the super-nanotubes and will guide their future design/fabrication and engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Tilted disc syndrome (TDS) is associated with characteristic ocular findings. The purpose of this study was to evaluate the ocular, refractive, and biometric characteristics in patients with TDS. METHODS This case-control study included 41 eyes of 25 patients who had established TDS and 40 eyes of 20 healthy control subjects. All participants underwent a complete ocular examination, including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry, keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. RESULTS There were no significant differences in spherical equivalent (P = 0.13) and total astigmatism (P = 0.37) between groups. However, mean best spectacle-corrected visual acuity (Log Mar) was significantly worse in TDS patients (P = 0.003). The lenticular astigmatism was greater in the syndrome group, whereas the corneal component was greater in controls (P = 0.059 and P = 0.028, respectively). The measured biometric features were the same in both groups, except for the lens thickness and lens-axial length factor, which were greater in the TDS group (P = 0.007 and P = 0.055, respectively). CONCLUSIONS Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lenses were characteristic findings in patients with TDS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the ocular refractive and biometric characteristics in patients with tilted disc syndrome (TDS). Methods: This case-control study comprised 41 eyes of 25 patients with established TDS and forty eyes of 20 age- and sex-matched healthy control subjects. All had a complete ocular examination including refraction and analysis using Fourier transformation, slit lamp biomicroscopy, pachymetry keratometry, and ocular biometry. Corneal topography examinations were performed in the syndrome group only. Results: There were no significant differences in spherical equivalent (p = 0.334) and total astigmatism (p= 0.246) between groups. However, mean best spectacular corrected visual acuity was significantly worse in TDS patients (P < 0.001). The lenticular astigmatism was significantly greater in the syndrome group, while the corneal component was greater in the controls (p = 0.004 and p = 0.002, respectively). The measured biometric features were the same in both groups, except for the lens thickness, relative lens position, and lens-axial length factor which were greater in the TDS group (p = 0.002, p = 0.015, and p = 0.025, respectively). Conclusions: Clinically significant lenticular astigmatism, more oblique corneal astigmatism, and thicker lens were characteristic findings in patients with TDS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.