424 resultados para Voltage measurement
Resumo:
The International Classification of Functioning, Disability and Health (ICF) assumes a biopsychosocial basis for disability and provides a framework for understanding how environmental factors contribute to the experience of disability. To determine the utility of prevalent disability assessment instruments, the authors examined the extent to which a range of such instruments addressed the impact of environmental factors on the individual and whether the instruments designed for different disability groups focused differentially on the environment. Items from 20 widely used disability assessment instruments were linked to the five chapters of the ICF environment component using standardized classification rules. Nineteen of the 20 instruments reviewed measured the environment to varying degrees. It was determined that environmental factors from the Natural Environment and Attitudes chapters were not well accommodated by the majority of instruments. Instruments developed for people with intellectual disabilities had the greatest environmental coverage. Only one instrument provided a relatively comprehensive and economical account of environmental barriers. The authors conclude that ICF classification of environmental factors provides a valuable resource for evaluating the environmental content of existing disability-related instruments, and that it may also provide a useful framework for revising instruments in use and for developing future disability assessment instruments.
Resumo:
Voltage rise is one of the main factors which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers’ resources and manage voltage rise in residential LV networks. PV is considered as the customer RE source. The suggested coordination approach in this paper includes both localized control strategy, based on local measurement, and distributed control strategy based on consensus algorithm. This approach can completely avoid maximum permissible voltage limit violation. A typical residential LV network is used as the case study where the simulated results are shown to verify the effectiveness of the proposed approach.
Resumo:
Neutron Compton scattering (NCS) measurements of the anisotropy of the momentum distribution and the mean Laplacian of the interatomic potential ∇2V have been performed using electron volt neutrons, with wave vector transfers between 24 Å−1 and 98 Å−1. The measured momentum distribution of the atoms displays significantly more anisotropy than a calculation using a model density of states. We have observed anisotropies in ∇2V for the first time. The results suggest that the atomic potential is harmonic within the graphite planes, but anharmonic for vibrations perpendicular to the planes.
Resumo:
While academic interest in destination branding has been gathering momentum since the field commenced in the late 1990s, one important gap in this literature that has received relatively little attention to date is the measurement of destination brand performance. This paper sets out one method for assessing the performance of a destination brand over time. The intent is to present an approach that will appeal to marketing practitioners, and which is also conceptually sound. The method is underpinned by Decision Set Theory and the concept of Consumer-Based Brand Equity (CBBE), while the key variables mirror the branding objectives used by many destination marketing organisations (DMO). The approach is demonstrated in this paper to measure brand performance for Australia in the New Zealand market. It is suggested the findings provide indicators of both i) the success of previous marketing communications, and ii) future performance, which can be easily communicated to a DMO’s stakeholders.
Resumo:
Currently there are little objective parameters that can quantify the success of one form of prostate surgical removal over another. Accordingly, at Old Dominion University (ODU) we have been developing a process resulting in the use of software algorithms to assess the coverage and depth of extra-capsular soft tissue removed with the prostate by the various surgical approaches. Parameters such as the percent of capsule that is bare of soft tissue and where present the depth and extent of coverage have been assessed. First, visualization methods and tools are developed for images of prostate slices that are provided to ODU by the Pathology Department at Eastern Virginia Medical School (EVMS). The visualization tools interpolate and present 3D models of the prostates. Measurement algorithms are then applied to determine statistics about extra-capsular tissue coverage. This paper addresses the modeling, visualization, and analysis of prostate gland tissue to aid in quantifying prostate surgery success. Particular attention is directed towards the accuracy of these measurements and is addressed in the analysis discussions.
Resumo:
There are no population studies of prevalence or incidence of child maltreatment in Australia. Child protection data gives some understanding but is restricted by system capacity and definitional issues across jurisdictions. Child protection data currently suggests that numbers of reports are increasing yearly, and the child protection system then becomes focussed on investigating all reports and diluting available resources for those children who are most in need of intervention. A public health response across multiple agencies enables responses to child safety across the entire population. All families are targeted at the primary level; examples include ensuring all parents know the dangers of shaking a baby or teaching children to say no if a situation makes them uncomfortable. The secondary level of prevention targets families with a number of risk factors, for example subsidised child care so children aren't left unsupervised after school when both parents have to be at work or home visiting for drug-addicted parents to ensure children are cared for. The tertiary response then becomes the responsibility of the child protection system and is reserved for those children where abuse and neglect are identified. This model requires that child safety is seen in a broader context than just the child protection system, and increasingly health professionals are being identified as an important component in the public health framework. If all injury is viewed as preventable and considered along a continuum of 'accidental' through to 'inflicted', it becomes possible to conceptualise child maltreatment in an injury context. Parental intent may not be to cause harm to the child, but by lack of insight or concern about risk, the potential for injury is high. The mechanisms for unintentional and intentional injury overlap and some suggest that by segregating child abuse (with the possible exception of sexual abuse) from unintentional injury, child abuse is excluded from the broader injury prevention initiative that is gaining momentum in the community. This research uses a public health perspective, specifically that of injury prevention, to consider the problem of child abuse. This study employed a mixed method design that incorporates secondary data analysis, data linkage and structured interviews of different professional groups. Datasets from the Queensland Injury Surveillance Unit (QISU) and The Department of Child Safety (DCS) were evaluated. Coded injury data was grouped according to intent of injury according to those with a code that indicated the ED presentation was due to child abuse, a code indicating that the injury was possibly due to abuse or, in the third group, the intent code indicated that the injury was unintentional and not due to abuse. Primary data collection from ED records was undertaken and information recoded to assess reliability and completeness. Emergency department data (QISU) was linked to Department of Child Safety Data to examine concordance and data quality. Factors influencing the collection and collation of these data were identified through structured interview methodology and analysed using qualitative methods. Secondary analysis of QISU data indicated that codes lacking specific information on the injury event were more likely to also have an intent code indicating abuse than those records where there was specific information on the injury event. Codes for abuse appeared in only 1.2% of the 84,765 records analysed. Unintentional injury was the most commonly coded intent (95.3%). In the group with a definite abuse code assigned at triage, 83% linked to a record with DCS and cases where documentation indicated police involvement were significantly more likely to be associated with a DCS record than those without such documentation. In those coded with an unintentional injury code, 22% linked to a DCS record with cases assigned an urgent triage category more likely to link than those with a triage category for resuscitation and children who presented to regional or remote hospitals more likely to link to a DCS record than those presenting to urban hospitals. Twenty-nine per cent of cases with a code indicating possible abuse linked to a DCS record. In documentation that indicated police involvement in the case, a code for unspecified activity when compared to cases with a code indicating involvement in a sporting activity and children less than 12 months of age compared to those in the 13-17 year old age group were all variables significantly associated with linkage to a DCS record. Only 13% of records contained documentation indicating that child abuse and neglect were considered in the diagnosis of the injury despite almost half of the sample having a code of abuse or possible abuse. Doctors and nurses were confident in their knowledge of the process of reporting child maltreatment but less confident about identifying child abuse and neglect and what should be reported. Many were concerned about implications of reporting, for the child and family and for themselves. A number were concerned about the implications of not reporting, mostly for the wellbeing of the child and a few in terms of their legal obligations as mandatory reporters. The outcomes of this research will help improve the knowledge of barriers to effective surveillance of child abuse in emergency departments. This will, in turn, ensure better identification and reporting practises; more reliable official statistical collections and the potential of flagging high-risk cases to ensure adequate departmental responses have been initiated.
Resumo:
Background: Measurement accuracy is critical for biomechanical gait assessment. Very few studies have determined the accuracy of common clinical rearfoot variables between cameras with different collection frequencies. Research question: What is the measurement error for common rearfoot gait parameters when using a standard 30Hz digital camera compared to 100Hz camera? Type of study: Descriptive. Methods: 100 footfalls were recorded from 10 subjects ( 10 footfalls per subject) running on a treadmill at 2.68m/s. A high-speed digital timer, accurate within 1ms served as an external reference. Markers were placed along the vertical axis of the heel counter and the long axis of the shank. 2D coordinates for the four markers were determined from heel strike to heel lift. Variables of interest included time of heel strike (THS), time of heel lift (THL), time to maximum eversion (TMax), and maximum rearfoot eversion angle (EvMax). Results: THS difference was 29.77ms (+/- 8.77), THL difference was 35.64ms (+/- 6.85), and TMax difference was 16.50ms (+/- 2.54). These temporal values represent a difference equal to 11.9%, 14.3%, and 6.6% of the stance phase of running gait, respectively. EvMax difference was 1.02 degrees (+/- 0.46). Conclusions: A 30Hz camera is accurate, compared to a high-frequency camera, in determining TMax and EvMax during a clinical gait analysis. However, relatively large differences, in excess of 12% of the stance phase of gait, for THS and THL variables were measured.
Resumo:
In this work we used a 3D quantitative CT ultrasound imaging system to characterise polymer gel dosimeters. The system comprised of two identical 5 MHz 128 element phased-array ultrasound transducers co-axially aligned and submerged in water as a coupling agent. Rotational and translational movement of the gel dosimeter sample between the transducers were performed using a robotic arm. Ultrasound signals were generated and received using an Olympus Omniscan unit. Dose sensitivity of attenuation and time of flight ultrasonic parameters were assessed using this system.
Resumo:
The success or effectiveness for any aircraft design is a function of many trade-offs. Over the last 100 years of aircraft design these trade-offs have been optimized and dominant aircraft design philosophies have emerged. Pilotless aircraft (or uninhabited airborne systems, UAS) present new challenges in the optimization of their configuration. Recent developments in battery and motor technology have seen an upsurge in the utility and performance of electric powered aircraft. Thus, the opportunity to explore hybrid-electric aircraft powerplant configurations is compelling. This thesis considers the design of such a configuration from an overall propulsive, and energy efficiency perspective. A prototype system was constructed using a representative small UAS internal combustion engine (10cc methanol two-stroke) and a 600W brushless Direct current (BLDC) motor. These components were chosen to be representative of those that would be found on typical small UAS. The system was tested on a dynamometer in a wind-tunnel and the results show an improvement in overall propulsive efficiency of 17% when compared to a non-hybrid powerplant. In this case, the improvement results from the utilization of a larger propeller that the hybrid solution allows, which shows that general efficiency improvements are possible using hybrid configurations for aircraft propulsion. Additionally this approach provides new improvements in operational and mission flexibility (such as the provision of self-starting) which are outlined in the thesis. Specifically, the opportunity to use the windmilling propeller for energy regeneration was explored. It was found (in the prototype configuration) that significant power (60W) is recoverable in a steep dive, and although the efficiency of regeneration is low, the capability can allow several options for improved mission viability. The thesis concludes with the general statement that a hybrid powerplant improves the overall mission effectiveness and propulsive efficiency of small UAS.
Resumo:
The ability of a piezoelectric transducer in energy conversion is rapidly expanding in several applications. Some of the industrial applications for which a high power ultrasound transducer can be used are surface cleaning, water treatment, plastic welding and food sterilization. Also, a high power ultrasound transducer plays a great role in biomedical applications such as diagnostic and therapeutic applications. An ultrasound transducer is usually applied to convert electrical energy to mechanical energy and vice versa. In some high power ultrasound system, ultrasound transducers are applied as a transmitter, as a receiver or both. As a transmitter, it converts electrical energy to mechanical energy while a receiver converts mechanical energy to electrical energy as a sensor for control system. Once a piezoelectric transducer is excited by electrical signal, piezoelectric material starts to vibrate and generates ultrasound waves. A portion of the ultrasound waves which passes through the medium will be sensed by the receiver and converted to electrical energy. To drive an ultrasound transducer, an excitation signal should be properly designed otherwise undesired signal (low quality) can deteriorate the performance of the transducer (energy conversion) and increase power consumption in the system. For instance, some portion of generated power may be delivered in unwanted frequency which is not acceptable for some applications especially for biomedical applications. To achieve better performance of the transducer, along with the quality of the excitation signal, the characteristics of the high power ultrasound transducer should be taken into consideration as well. In this regard, several simulation and experimental tests are carried out in this research to model high power ultrasound transducers and systems. During these experiments, high power ultrasound transducers are excited by several excitation signals with different amplitudes and frequencies, using a network analyser, a signal generator, a high power amplifier and a multilevel converter. Also, to analyse the behaviour of the ultrasound system, the voltage ratio of the system is measured in different tests. The voltage across transmitter is measured as an input voltage then divided by the output voltage which is measured across receiver. The results of the transducer characteristics and the ultrasound system behaviour are discussed in chapter 4 and 5 of this thesis. Each piezoelectric transducer has several resonance frequencies in which its impedance has lower magnitude as compared to non-resonance frequencies. Among these resonance frequencies, just at one of those frequencies, the magnitude of the impedance is minimum. This resonance frequency is known as the main resonance frequency of the transducer. To attain higher efficiency and deliver more power to the ultrasound system, the transducer is usually excited at the main resonance frequency. Therefore, it is important to find out this frequency and other resonance frequencies. Hereof, a frequency detection method is proposed in this research which is discussed in chapter 2. An extended electrical model of the ultrasound transducer with multiple resonance frequencies consists of several RLC legs in parallel with a capacitor. Each RLC leg represents one of the resonance frequencies of the ultrasound transducer. At resonance frequency the inductor reactance and capacitor reactance cancel out each other and the resistor of this leg represents power conversion of the system at that frequency. This concept is shown in simulation and test results presented in chapter 4. To excite a high power ultrasound transducer, a high power signal is required. Multilevel converters are usually applied to generate a high power signal but the drawback of this signal is low quality in comparison with a sinusoidal signal. In some applications like ultrasound, it is extensively important to generate a high quality signal. Several control and modulation techniques are introduced in different papers to control the output voltage of the multilevel converters. One of those techniques is harmonic elimination technique. In this technique, switching angles are chosen in such way to reduce harmonic contents in the output side. It is undeniable that increasing the number of the switching angles results in more harmonic reduction. But to have more switching angles, more output voltage levels are required which increase the number of components and cost of the converter. To improve the quality of the output voltage signal with no more components, a new harmonic elimination technique is proposed in this research. Based on this new technique, more variables (DC voltage levels and switching angles) are chosen to eliminate more low order harmonics compared to conventional harmonic elimination techniques. In conventional harmonic elimination method, DC voltage levels are same and only switching angles are calculated to eliminate harmonics. Therefore, the number of eliminated harmonic is limited by the number of switching cycles. In the proposed modulation technique, the switching angles and the DC voltage levels are calculated off-line to eliminate more harmonics. Therefore, the DC voltage levels are not equal and should be regulated. To achieve this aim, a DC/DC converter is applied to adjust the DC link voltages with several capacitors. The effect of the new harmonic elimination technique on the output quality of several single phase multilevel converters is explained in chapter 3 and 6 of this thesis. According to the electrical model of high power ultrasound transducer, this device can be modelled as parallel combinations of RLC legs with a main capacitor. The impedance diagram of the transducer in frequency domain shows it has capacitive characteristics in almost all frequencies. Therefore, using a voltage source converter to drive a high power ultrasound transducer can create significant leakage current through the transducer. It happens due to significant voltage stress (dv/dt) across the transducer. To remedy this problem, LC filters are applied in some applications. For some applications such as ultrasound, using a LC filter can deteriorate the performance of the transducer by changing its characteristics and displacing the resonance frequency of the transducer. For such a case a current source converter could be a suitable choice to overcome this problem. In this regard, a current source converter is implemented and applied to excite the high power ultrasound transducer. To control the output current and voltage, a hysteresis control and unipolar modulation are used respectively. The results of this test are explained in chapter 7.
Resumo:
This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.
Resumo:
The development of user expertise is a strategic imperative for organizations in hyper-competitive markets. This paper conceptualizes opreationalises and validates user expertise in contemporary Information Systems (IS) as a formative, multidimensional index. Such a validated and widely accepted index would facilitate progression of past research on user competence and efficacy of IS to complex contemporary IS, while at the same time providing a benchmark for organizations to track their user expertise. The validation involved three separate studies, including exploratory and confirmatory phases, using data from 244 respondents.
Resumo:
Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.
Resumo:
This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.
Resumo:
Severe power quality problems can arise when a large number of single-phase distributed energy resources (DERs) are connected to a low-voltage power distribution system. Due to the random location and size of DERs, it may so happen that a particular phase generates excess power than its load demand. In such an event, the excess power will be fed back to the distribution substation and will eventually find its way to the transmission network, causing undesirable voltage-current unbalance. As a solution to this problem, the article proposes the use of a distribution static compensator (DSTATCOM), which regulates voltage at the point of common coupling (PCC), thereby ensuring balanced current flow from and to the distribution substation. Additionally, this device can also support the distribution network in the absence of the utility connection, making the distribution system work as a microgrid. The proposals are validated through extensive digital computer simulation studies using PSCADTM