253 resultados para VARIABLE DIFFUSION
Resumo:
Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard nongrowing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.
Resumo:
Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems.
Resumo:
Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction—diffusion process on 0
Resumo:
The quality of species distribution models (SDMs) relies to a large degree on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors (Austin, 2002). Recent reviews of SDM techniques, have sought to optimize predictive performance e.g. Elith et al., 2006. In general SDMs employ one of three approaches to variable selection. The simplest approach relies on the expert to select the variables, as in environmental niche models Nix, 1986 or a generalized linear model without variable selection (Miller and Franklin, 2002). A second approach explicitly incorporates variable selection into model fitting, which allows examination of particular combinations of variables. Examples include generalized linear or additive models with variable selection (Hastie et al. 2002); or classification trees with complexity or model based pruning (Breiman et al., 1984, Zeileis, 2008). A third approach uses model averaging, to summarize the overall contribution of a variable, without considering particular combinations. Examples include neural networks, boosted or bagged regression trees and Maximum Entropy as compared in Elith et al. 2006. Typically, users of SDMs will either consider a small number of variable sets, via the first approach, or else supply all of the candidate variables (often numbering more than a hundred) to the second or third approaches. Bayesian SDMs exist, with several methods for eliciting and encoding priors on model parameters (see review in Low Choy et al. 2010). However few methods have been published for informative variable selection; one example is Bayesian trees (O’Leary 2008). Here we report an elicitation protocol that helps makes explicit a priori expert judgements on the quality of candidate variables. This protocol can be flexibly applied to any of the three approaches to variable selection, described above, Bayesian or otherwise. We demonstrate how this information can be obtained then used to guide variable selection in classical or machine learning SDMs, or to define priors within Bayesian SDMs.
Resumo:
We propose a family of multivariate heavy-tailed distributions that allow variable marginal amounts of tailweight. The originality comes from introducing multidimensional instead of univariate scale variables for the mixture of scaled Gaussian family of distributions. In contrast to most existing approaches, the derived distributions can account for a variety of shapes and have a simple tractable form with a closed-form probability density function whatever the dimension. We examine a number of properties of these distributions and illustrate them in the particular case of Pearson type VII and t tails. For these latter cases, we provide maximum likelihood estimation of the parameters and illustrate their modelling flexibility on simulated and real data clustering examples.
Resumo:
This study investigates the relationship between per capita carbon dioxide (CO2) emissions and per capita GDP in Australia, while controlling for technological state as measured by multifactor productivity and export of black coal. Although technological progress seems to play a critical role in achieving long term goals of CO2 reduction and economic growth, empirical studies have often considered time trend to proxy technological change. However, as discoveries and diffusion of new technologies may not progress smoothly with time, the assumption of a deterministic technological progress may be incorrect in the long run. The use of multifactor productivity as a measure of technological state, therefore, overcomes the limitations and provides practical policy directions. This study uses recently developed bound-testing approach, which is complemented by Johansen- Juselius maximum likelihood approach and a reasonably large sample size to investigate the cointegration relationship. Both of the techniques suggest that cointegration relationship exists among the variables. The long-run and short-run coefficients of CO2 emissions function is estimated using ARDL approach. The empirical findings in the study show evidence of the existence of Environmental Kuznets Curve type relationship for per capita CO2 emissions in the Australian context. The technology as measured by the multifactor productivity, however, is not found as an influencing variable in emissionsincome trajectory.
Resumo:
Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.
Resumo:
Multimetric ecological condition assessment has become an important biodiversity management tool. This study was the first to examine the reliability of these ecological surrogates across variable environments, and the implications for surrogate efficacy. It was demonstrated that through strategic application and design of the multimetric ecological condition index, the effects of environmental gradients and disturbance regimes can be mitigated, and that ecological condition assessment may serve as a scientifically rigorous approach for conservation planning.
Resumo:
One-dimensional nanomaterials have short Li+ diffusion paths and promising structural stability, which results in a long cycle life during Li+ insertion and extraction processes in lithium rechargeable batteries. In this study, we fabricated one-dimensional spinel Li 4Ti5O12 (LTO) nanofibers using an electrospinning technique and studied the Zr4+ doping effect on the lattice, electronic structure, and resultant electrochemical properties of Li-ion batteries (LIBs). Accommodating a small fraction of Zr4+ ions in the Ti4+ sites of the LTO structure gave rise to enhanced LIB performance, which was due to structural distortion through an increase in the average lattice constant and thereby enlarged Li+ diffusion paths rather than changes to the electronic structure. Insulating ZrO2 nanoparticles present between the LTO grains due to the low Zr4+ solubility had a negative effect on the Li+ extraction capacity, however. These results could provide key design elements for LTO anodes based on atomic level insights that can pave the way to an optimal protocol to achieve particular functionalities. Distorted lattice: Zr4+ is doped into a 1 D spinel Li4Ti5O12 (LTO) nanostructure and the resulting electrochemical properties are explored through a combined theoretical and experimental investigation. The improved electrochemical performance resulting from incorporation of Zr4+ in the LTO is due to lattice distortion and, thereby, enlarged Li+ diffusion paths rather than to a change in the electronic structure.
Resumo:
Using density functional theory, we investigated the position preference and diffusion mechanisms of interstitial oxygen ions in lanthanum silicate La9.33Si6O26, which is an apatite-structured oxide and a promising candidate electrolyte material for solid oxide fuel cells. The reported lanthanum vacancies were explicitly taken into account by theoretically determining their arrangement with a supercell model. The most stable structures and the formation energies of oxygen interstitials were determined for each charged state. It was found that the double-negatively charged state is stable over a wide range of the Fermi level, and that the excess oxygen ions form split interstitials with the original oxygen ions, while the neutral and the single-negatively charged states preferably form molecular oxygen. These species were found near the lanthanum vacancy site. The theoretically determined migration pathway along the c-axis essentially follows an interstitialcy mechanism. The obtained migration barrier is sensitive to the charge state, and is also affected by the lanthanum vacancy. The barrier height of the double-negatively charged state was calculated to be 0.58 eV for the model structure, which is consistent with the measured activation energy.
Resumo:
A stable Y-doped BaZrO3 electrolyte film, which showed a good performance in proton-conducting SOFCs, was successfully fabricated using a novel ionic diffusion strategy.
Genetic analysis of structural brain connectivity using DICCCOL models of diffusion MRI in 522 twins
Resumo:
Genetic and environmental factors affect white matter connectivity in the normal brain, and they also influence diseases in which brain connectivity is altered. Little is known about genetic influences on brain connectivity, despite wide variations in the brain's neural pathways. Here we applied the 'DICCCOL' framework to analyze structural connectivity, in 261 twin pairs (522 participants, mean age: 21.8 y ± 2.7SD). We encoded connectivity patterns by projecting the white matter (WM) bundles of all 'DICCCOLs' as a tracemap (TM). Next we fitted an A/C/E structural equation model to estimate additive genetic (A), common environmental (C), and unique environmental/error (E) components of the observed variations in brain connectivity. We found 44 'heritable DICCCOLs' whose connectivity was genetically influenced (α2>1%); half of them showed significant heritability (α2>20%). Our analysis of genetic influences on WM structural connectivity suggests high heritability for some WM projection patterns, yielding new targets for genome-wide association studies.
Resumo:
Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.