245 resultados para Synthetic aperture imaging
Resumo:
Photodynamic therapy (PDT) is an emerging treatment modality for a range of disease classes, both cancerous and noncancerous. This has brought about an active pursuit of new PDT agents that can be optimized for the unique set of photophysical characteristics that are required for a successful clinical agent. We now describe a totally new class of PDT agent, the BF2-chelated 3,5-diaryl-1H-pyrrol-2-yl-3,5-diarylpyrrol-2-ylideneamines (tetraarylazadipyrromethenes). Optimized synthetic procedures have been developed to facilitate the generation of an array of specifically substituted derivatives to demonstrate how control of key therapeutic parameters such as wavelength of maximum absorbance and singlet-oxygen generation can be achieved. Photosensitizer absorption maxima can be varied within the body's therapeutic window between 650 and 700 nm, with high extinction coefficients ranging from 75,000 to 85,000 M(-1) cm(-1). Photosensitizer singlet-oxygen generation level was modulated by the exploitation of the heavy-atom effect. An array of photosensitizers with and without bromine atom substituents gave rise to a series of compounds with varying singlet-oxygen generation profiles. X-ray structural evidence indicates that the substitution of the bromine atoms has not caused a planarity distortion of the photosensitizer. Comparative singlet-oxygen production levels of each photosensitizer versus two standards demonstrated a modulating effect on singlet-oxygen generation depending upon substituent patterns about the photosensitizer. Confocal laser scanning microscopy imaging of 18a in HeLa cervical carcinoma cells proved that the photosensitizer was exclusively localized to the cellular cytoplasm. In vitro light-induced toxicity assays in HeLa cervical carcinoma and MRC5-SV40 transformed fibroblast cancer cell lines confirmed that the heavy-atom effect is viable in a live cellular system and that it can be exploited to modulate assay efficacy. Direct comparison of the efficacy of the photosensitizers 18b and 19b, which only differ in molecular structure by the presence of two bromine atoms, illustrated an increase in efficacy of more than a 1000-fold in both cell lines. All photosensitizers have very low to nondeterminable dark toxicity in our assay system.
Resumo:
Undergraduate Medical Imaging (MI)students at QUT attend their first clinical placement towards the end of semester two. Students undertake two (pre)clinical skills development units – one theory and one practical. Students gain good contextual and theoretical knowledge during these units via a blended learning model with multiple learning methods employed. Students attend theory lectures, practical sessions, tutorial sessions in both a simulated and virtual environment and also attend pre-clinical scenario based tutorial sessions. The aim of this project is to evaluate the use of blended learning in the context of 1st year Medical Imaging Radiographic Technique and its effectiveness in preparing students for their first clinical experience. It is hoped that the multiple teaching methods employed within the pre-clinical training unit at QUT builds students clinical skills prior to the real situation. A quantitative approach will be taken, evaluating via pre and post clinical placement surveys. This data will be correlated with data gained in the previous year on the effectiveness of this training approach prior to clinical placement. In 2014 59 students were surveyed prior to their clinical placement demonstrated positive benefits of using a variety of learning tools to enhance their learning. 98.31%(n=58)of students agreed or strongly agreed that the theory lectures were a useful tool to enhance their learning. This was followed closely by 97% (n=57) of the students realising the value of performing role-play simulation prior to clinical placement. Tutorial engagement was considered useful for 93.22% (n=55) whilst 88.14% (n=52) reasoned that the x-raying of phantoms in the simulated radiographic laboratory was beneficial. Self-directed learning yielded 86.44% (n=51). The virtual reality simulation software was valuable for 72.41% (n=42) of the students. Of the 4 students that disagreed or strongly disagreed with the usefulness of any tool they strongly agreed to the usefulness of a minimum of one other learning tool. The impact of the blended learning model to meet diverse student needs continues to be positive with students engaging in most offerings. Students largely prefer pre -clinical scenario based practical and tutorial sessions where 'real-world’ situations are discussed.
Resumo:
PURPOSE To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. METHODS We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. RESULTS We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. CONCLUSIONS We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain.
Resumo:
Wildlife conservation involves an understanding of a specific animal, its environment and the interaction within a local ecosystem. Unmanned Aerial Vehicles (UAVs) present cost effective, non-intrusive solution for detecting animals over large areas and the use thermal imaging cameras offer the ability detect animals that would otherwise be concealed to visible light cameras. This report examines some of limitations on using SURF for the development of large maps using multiple stills images extracted from the thermal imaging video camera which contain wildlife (eg. Koala in them).