263 resultados para Stretching modes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micrometre-sized MgB2 crystals of varying quality, synthesized at low temperature and autogeneous pressure, are compared using a combination of Raman and Infra-Red (IR) spectroscopy. These data, which include new peak positions in both spectroscopies for high quality MgB2, are interpreted using DFT calculations on phonon behaviour for symmetry-related structures. Raman and IR activity additional to that predicted by point group analyses of the P6/mmm symmetry are detected. These additional peaks, as well as the overall shapes of calculated phonon dispersion (PD) models are explained by assuming a double super-lattice, consistent with a lower symmetry structure for MgB2. A 2x super-lattice in the c-direction allows a simple correlation of the pair breaking energy and the superconducting gap by activation of corresponding acoustic frequencies. A consistent physical interpretation of these spectra is obtained when the position of a phonon anomaly defines a super-lattice modulation in the a-b plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular structure of the copper–lead silicate mineral luddenite has been analysed using vibrational spectroscopy. The mineral is only one of many silicate minerals containing copper. The intense Raman band at 978 cm−1 is assigned to the ν1 (A1g) symmetric stretching vibration of Si5O14 units. Raman bands at 1122, 1148 and 1160 cm−1 are attributed to the ν3 SiO4 antisymmetric stretching vibrations. The bands in the 678–799 cm−1 are assigned to OSiO bending modes of the (SiO3)n chains. Raman bands at 3317 and 3329 cm−1 are attributed to water stretching bands. Bands at 3595 and 3629 cm−1 are associated with the stretching vibrations of hydroxyl units suggesting that hydroxyl units exist in the structure of luddenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral meliphanite (Ca,Na)2Be[(Si,Al)2O6(F,OH)] is a crystalline sodium calcium beryllium silicate which has the potential to be used as piezoelectric material and for other ferroelectric applications. The mineral has been characterized by a combination of scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and vibrational spectroscopy. EDS analysis shows a material with high concentrations of Si and Ca and low amounts of Na, Al and F. Beryllium was not detected. Raman bands at 1016 and 1050 cm−1 are assigned to the SiO and AlOH stretching vibrations of three dimensional siloxane units. The infrared spectrum of meliphanite is very broad in comparison with the Raman spectrum. Raman bands at 472 and 510 cm−1 are assigned to OSiO bending modes. Raman spectroscopy identifies bands in the OH stretching region. Raman spectroscopy with complimentary infrared spectroscopy enables the characterization of the silicate mineral meliphanite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral tunisite has been studied by using a combination of scanning electron microscopy with energy dispersive X-ray fluorescence and vibrational spectroscopy. Chemical analysis shows the presence of Na, Ca, Al and Cl. SEM shows a pure single phase. An intense Raman band at 1127 cm−1 is assigned to the carbonate ν1 symmetric stretching vibration and the Raman band at 1522 cm−1 is assigned to the ν3 carbonate antisymmetric stretching vibration. Infrared bands are observed in similar positions. Multiple carbonate bending modes are found. Raman bands attributable to AlO stretching and bending vibrations are observed. Two Raman bands at 3419 and 3482 cm−1 are assigned to the OH stretching vibrations of the OH units. Vibrational spectroscopy enables aspects of the molecular structure of the carbonate mineral tunisite to be assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The political question of how the will of a community is to be democratically formed and adhered to, the question of social democracy, is normatively tied to the mode of criminal justice employed within that democratic public sphere. Liberal, republican, procedural and communitarian forms of democratic will-formation respectively reflect retributive,restorative, procedural and co-operative modes of criminal justice. After first elaborating these links through the critical response of republican and procedural theories of democracy to the liberal practice of democratic will-formation and its retributive mode of justice, our discussion considers the recent practice of restorative and procedural justice with respect to Indigenous youth; and this in the context of a severely diminished role for Indigenous justice agencies in the public sphere. In light of certain shortcomings in both the restorative and procedural modes of justice, and so too with republican and procedural understandings of the democratic public sphere, we turn to a discussion of procedural communitarianism, anchored as it is in Dewey’s notion of social co-operation. From here we attempt a brief formulation of what a socially co-operative mode of justice might consist of; a mode of justice where historically racial and economically coercive injustices are sufficiently recognised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gilalite is a copper silicate mineral with a general formula of Cu5Si6O17 · 7H2O. The mineral is often found in association with another copper silicate mineral, apachite, Cu9Si10O29 · 11H2O. Raman and infrared spectroscopy have been used to characterize the molecular structure of gilalite. The structure of the mineral shows disorder, which is reflected in the difficulty of obtaining quality Raman spectra. Raman spectroscopy clearly shows the absence of OH units in the gilalite structure. Intense Raman bands are observed at 1066, 1083, and 1160 cm−1. The Raman band at 853 cm−1 is assigned to the –SiO3 symmetrical stretching vibration and the low-intensity Raman bands at 914, 953, and 964 cm−1 may be ascribed to the antisymmetric SiO stretching vibrations. An intense Raman band at 673 cm−1 with a shoulder at 663 cm−1 is assigned to the ν4 Si-O-Si bending modes. Raman spectroscopy complemented with infrared spectroscopy enabled a better understanding of the molecular structure of gilalite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter discussed the various modes of operation of the Doubly Fed Induction Generator (DFIG) based wind farm system. The impact of a auxiliary damping controller on the different modes of operation for the DFIG based wind generation system is investigated. The co-ordinated tuning of the damping controller to enhance the damping of the oscillatory modes using Bacteria Foraging (BF) technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system under Super/Sub-synchronous speed of operation. The robustness issue of the damping controller is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and infrared spectra of the uranyl mineral phurcalite, Ca2(UO2)3O2(PO4)2⋅7H2O, from Red Canyon, Utah, USA, were studied and tentatively interpreted. Observed bands were assigned to the stretching and bending vibrations of (UO2)2+ and (PO4)3− units and to the stretching and bending vibrations and libration modes of water molecules. Approximate lengths of U–O in (UO2)2+ and O–H⋯O hydrogen bond lengths were inferred from observed stretching vibrations. The presence of structurally nonequivalent U6+ and P5+ was inferred from the number of corresponding stretching bands of (UO2)2+ and (PO4)3− units observed in the Raman and infrared spectra..

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy complimented with infrared spectroscopy has been used to study the molecular structure of the mineral of plumbophyllite. The Raman spectrum is dominated by a very intense sharp peak at 1027 cm−1, assigned to the SiO stretching vibrations of (SiO3)n units. A very intense Raman band at 643 cm−1 is assigned to the bending mode of (SiO3)n units. Raman bands observed at 3215, 3443, 3470, 3494 and 3567 cm−1 are assigned to water stretching vibrations. Multiple water stretching and bending modes are observed showing that there is much variation in hydrogen bonding between water and the silicate surfaces. Because of the close similarity in the structure of plumbophyllite and apophyllite, a comparison of the spectra with that of apophyllites is made. By using vibrational spectroscopy an assessment of the molecular structure of plumbophyllite has been made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the mineral normandite using a combination of scanning electron microscopy with energy dispersive spectroscopy and vibrational spectroscopy. The mineral normandite NaCa(Mn2+,Fe2+)(Ti,Nb,Zr)Si2O7(O,F)2 is a crystalline sodium calcium silicate which contains rare earth elements. Chemical analysis shows the mineral contains a range of elements including Na, Mn2+, Ca, Fe2+ and the rare earth element niobium. No Raman bands are observed above 1100 cm−1. The mineral is characterised by Raman bands observed at 724, 748, 782 and 813 cm−1. Infrared bands are broad; nevertheless bands may be resolved at 723, 860, 910, 958, 933, 1057 and 1073 cm−1. Intense Raman bands at 454, 477 and 513 cm−1 are attributed to OSiO bending modes. No Raman bands are observed in the hydroxyl stretching region, but low intensity infrared bands are observed at 3191 and 3450 cm−1. This observation brings into question the true formula of the mineral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral ushkovite has been analyzed using a combination of electron microscopy with EDX and vibrational spectroscopy. Chemical analysis shows the mineral contains P, Mg with very minor Fe. Thus, the formula of the studied ushkovite is Mg32+(PO4)2·8H2O. The Raman spectrum shows an intense band at 953 cm−1 assigned to the ν1 symmetric stretching mode. In the infrared spectra complexity exists with multiple antisymmetric stretching vibrations observed, due to the reduced tetrahedral symmetry. This loss of degeneracy is also reflected in the bending modes. Strong infrared bands around 827 cm−1 are attributed to water librational modes. The Raman spectra of the hydroxyl-stretching region are complex with overlapping broad bands. Hydroxyl stretching vibrations are identified at 2881, 2998, 3107, 3203, 3284 and 3457 cm−1. The wavenumber band at 3457 cm−1 is attributed to the presence of FeOH groups. This complexity is reflected in the water HOH bending modes where a strong infrared band centered around 1653 cm−1 is found. Such a band reflects the strong hydrogen bonding of the water molecules to the phosphate anions in adjacent layers. Spectra show three distinct OH bending bands from strongly hydrogen-bonded, weakly hydrogen bonded water and non-hydrogen bonded water. Vibrational spectroscopy enhances our knowledge of the molecular structure of ushkovite.