263 resultados para Radiation chemistry.
Resumo:
This article presents the results of a single-day census of radiation therapy (RT) treatment and technology use in Australia. The primary aim of the study was to ascertain patterns of RT practice and technology in use across Australia. These data were primarily collated to inform curriculum development of academic programs, thereby ensuring that training is matched to workforce patterns of practice. Methods: The study design was a census method with all 59 RT centres in Australia being invited to provide quantitative summary data relating to patient case mix and technology use on a randomly selected but common date. Anonymous and demographic-free data were analysed using descriptive statistics. Results: Overall data were provided across all six Australian States by 29 centres of a possible 59, yielding a response rate of 49% and representing a total of 2743 patients. Findings from this study indicate the increasing use of emerging intensity-modulated radiotherapy (IMRT), image fusion and image-guided radiation therapy (IGRT) technology in Australian RT planning and delivery phases. IMRT in particular was used for 37% of patients, indicating a high uptake of the technology in Australia when compared to other published data. The results also highlight the resource-intensive nature of benign tumour radiotherapy. Conclusions: In the absence of routine national data collection, the single-day census method offers a relatively convenient means of measuring and tracking RT resource utilisation. Wider use of this tool has the potential to not only track trends in technology implementation but also inform evidence-based guidelines for referral and resource planning.
Resumo:
Introduction Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.
Resumo:
A rapid and catalyst-free cycloaddition system for visible-light-induced click chemistry is reported. A readily accessible photoreactive 2H-azirine moiety was designed to absorb light at wavelengths above 400 nm. Irradiation with low-energy light sources thus enables efficient small-molecule synthesis with a diverse range of multiple-bond-containing compounds. Moreover, in order to demonstrate the efficiency of the current approach, quantitative ligation of the photoactivatable chromophore with functional polymeric substrates was performed and full conversion with irradiation times of only 1 min at ambient conditions was achieved. The current report thus presents a highly efficient method for applications involving selective cycloaddition to electron-deficient multiple-bond-containing materials.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
During their entire lives, people are exposed to the pollutants present in indoor air. Recently, Electronic Nicotine Delivery Systems, mainly known as electronic cigarettes, have been widely commercialized: they deliver particles into the lungs of the users but a “second-hand smoke” has yet to be associated to this indoor source. On the other hand, the naturally-occurring radioactive gas, i.e. radon, represents a significant risk for lung cancer, and the cumulative action of these two agents could be worse than the agents separately would. In order to deepen the interaction between radon progeny and second-hand aerosol from different types of cigarettes, a designed experimental study was carried out by generating aerosol from e-cigarette vaping as well as from second-hand traditional smoke inside a walk-in radon chamber at the National Institute of Ionizing Radiation Metrology (INMRI) of Italy. In this chamber, the radon present in air comes naturally from the floor and ambient conditions are controlled. To characterize the sidestream smoke emitted by cigarettes, condensation particle counters and scanning mobility particle sizer were used. Radon concentration in the air was measured through an Alphaguard ionization chamber, whereas the measurement of radon decay product in the air was performed with the Tracelab BWLM Plus-2S Radon daughter Monitor. It was found an increase of the Potential Alpha-Energy Concentration (PAEC) due to the radon decay products attached to aerosol for higher particle number concentrations. This varied from 7.47 ± 0.34 MeV L−1 to 12.6 ± 0.26 MeV L−1 (69%) for the e-cigarette. In the case of traditional cigarette and at the same radon concentration, the increase was from 14.1 ± 0.43 MeV L−1 to 18.6 ± 0.19 MeV L−1 (31%). The equilibrium factor increases, varying from 23.4% ± 1.11% to 29.5% ± 0.26% and from 30.9% ± 1.0% to 38.1 ± 0.88 for the e-cigarette and traditional cigarette, respectively. These growths still continue for long time after the combustion, by increasing the exposure risk.
Resumo:
β-Hydroxyperoxyl radicals are formed during atmospheric oxidation of unsaturated volatile organic compounds such as isoprene. They are intermediates in the combustion of alcohols. In these environments the unimolecular isomerization and decomposition of β-hydroxyperoxyl radicals may be of importance, either through chemical or thermal activation. We have used ion-trap mass spectrometry to generate the distonic charge-tagged β-hydroxyalkyl radical anion, ˙CH2C(OH)(CH3)CH2C(O)O−, and investigated its subsequent reaction with O2 in the gas phase under conditions that are devoid of complicating radical–radical reactions. Quantum chemical calculations and master equation/RRKM theory modeling are used to rationalize the results and discern a reaction mechanism. Reaction is found to proceed via initial hydrogen abstraction from the γ-methylene group and from the β-hydroxyl group, with both reaction channels eventually forming isobaric product ions due to loss of either ˙OH + HCHO or ˙OH + CO2. Isotope labeling studies confirm that a 1,5-hydrogen shift from the β-hydroxyl functionality results in a hydroperoxyalkoxyl radical intermediate that can undergo further unimolecular dissociations. Furthermore, this study confirms that the facile decomposition of β-hydroxyperoxyl radicals can yield ˙OH in the gas phase.
Resumo:
The new furnace at the Materials Characterization by X-ray Diffraction beamline at Elettra has been designed for powder diffraction measurements at high temperature (up to 1373 K at the present state). Around the measurement region the geometry of the radiative heating element assures a negligible temperature gradient along the capillary and can accommodate either powder samples in capillary or small flat samples. A double capillary holder allows flow-through of gas in the inner sample capillary while the outer one serves as the reaction chamber. The furnace is coupled to a translating curved imaging-plate detector, allowing the collection of diffraction patterns up to 2[theta] [asymptotically equal to] 130°.
Resumo:
We have performed a high-resolution synchrotron radiation photoelectron spectroscopy study of the initial growth stages of the ZnPd near-surface alloy on Pd(111), complemented by scanning tunnelling microscopy data. We show that the chemical environment for surfaces containing less than half of one monolayer of Zn is chemically distinct from subsequent layers. Surfaces where the deposition is performed at room temperature contain ZnPd islands surrounded by a substrate with dilute Zn substitutions. Annealing these surfaces drives the Zn towards the substrate top-layer, and favours the completion of the first 1 : 1 monolayer before the onset of growth in the next layer.
Resumo:
Background: Catheter ablation procedures for atrial fibrillation (AF) may frequently require long fluoroscopic times. We sought to undertake a review of radiation safety practice in our Cardiac Electrophysiology Laboratory and implement changes to minimize fluoroscopic doses. We also sought to compare the results with radiation doses for percutaneous coronary intervention (PCI) cases performed in our hospital. Methods: Fluoroscopic times and doses for AF ablation procedures performed by a single operator on a Philips Integris H3000 image-intensifier were analysed for 11-month period. Results were compared with all PCI procedures performed over a similar period by multiple operators on a Philips Integris Allura FD system. Comprehensive review of radiation practice in the Electrophysiology laboratory identified the potential to reduce pulse frame rates and doses, and to narrow the field of interest without impacting the performance of the procedure. These changes were implemented and results analysed after a further 11 months. Results: In the pre-intervention period 50 AF catheter ablations had a mean fluoroscopic time of 86.4 min and mean fluoroscopic dose 68.4 Gy/cm2. Post-intervention 75 procedures had a mean fluorosocopic time of 68.9 min (p < 0.0001) and mean dose of 14.3 Gy/cm2 (p < 0.0001) 128 PCI procedures had a mean combined fluoroscopic and image acquisition time of 10.0 min and mean total dose 38.8 Gy/cm2. Conclusions: Catheter ablation procedures for AF may require lengthy use of fluoroscopy but simple modifications to radiation practice can result in marked reductions in radiation dose that compare favourably with PCI case doses
Resumo:
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinicallyuseful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Resumo:
J.W.Lindt’s Colonial man and Aborigine image from the GRAFTON ALBUM: “On chemistry and optics all does not depend, art must with these in triple union blend” (text from J.W. Lindt’s photographic backing card) In this paper, I follow an argument that Lindt held a position in his particular colonial environment where he was simultaneously both an insider and an outsider and that such a position may be considered prerequisite in stimulating exchange. A study of the transition of J.W. Lindt in Grafton, N.S.W. in the 1860s from a traveller to a migrant and subsequently to a professional photographer, as well as Lindt’s photographic career, which evolved through strategic action and technical approaches to photography, bears witness to his cultural relativity. One untitled photograph from this period of work constructs a unique commentary of Australian colonial life that illustrates a non-hegemonic position, particularly as it was included in one of the first albums of photographs of Aborigines that Lindt gifted to an illustrious person (in this case the Mayor of Grafton). As in his other studio constructions, props and backdrops were arranged and sitters were positioned with care, but this photograph is the only one in the album that includes a non-Aborigine in a relationship to an Aborigine. An analysis of the props, technical details of the album and the image suggests a reconciliatory aspect that thwarts the predominant attitudes towards Aborigines in the area at that time.
Resumo:
Purpose Peer-review programmes in radiation oncology are used to facilitate the process and evaluation of clinical decision-making. However, web-based peer-review methods are still uncommon. This study analysed an inter-centre, web-based peer-review case conference as a method of facilitating the decision-making process in radiation oncology. Methodology A benchmark form was designed based on the American Society for Radiation Oncology targets for radiation oncology peer review. This was used for evaluating the contents of the peer-review case presentations on 40 cases, selected from three participating radiation oncology centres. A scoring system was used for comparison of data, and a survey was conducted to analyse the experiences of radiation oncology professionals who attended the web-based peer-review meetings in order to identify priorities for improvement. Results The mean scores for the evaluations were 82·7, 84·5, 86·3 and 87·3% for cervical, prostate, breast and head and neck presentations, respectively. The survey showed that radiation oncology professionals were confident about the role of web-based peer-reviews in facilitating sharing of good practice, stimulating professionalism and promoting professional growth. The participants were satisfied with the quality of the audio and visual aspects of the web-based meeting. Conclusion The results of this study suggest that simple inter-centre web-based peer-review case conferences are a feasible technique for peer review in radiation oncology. Limitations such as data security and confidentiality can be overcome by the use of appropriate structure and technology. To drive the issues of quality and safety a step further, small radiotherapy departments may need to consider web-based peer-review case conference as part of their routine quality assurance practices.
Resumo:
Road traffic emissions are often considered the main source of ultrafine particles (UFP, diameter smaller than 100 nm) in urban environments. However, recent studies worldwide have shown that - in high-insolation urban regions at least - new particle formation events can also contribute to UFP. In order to quantify such events we systematically studied three cities located in predominantly sunny environments: Barcelona (Spain), Madrid (Spain) and Brisbane (Australia). Three long term datasets (1-2 years) of fine and ultrafine particle number size distributions (measured by SMPS, Scanning Mobility Particle Sizer) were analysed. Compared to total particle number concentrations, aerosol size distributions offer far more information on the type, origin and atmospheric evolution of the particles. By applying k-Means clustering analysis, we categorized the collected aerosol size distributions in three main categories: “Traffic” (prevailing 44-63% of the time), “Nucleation” (14-19%) and “Background pollution and Specific cases” (7-22%). Measurements from Rome (Italy) and Los Angeles (California) were also included to complement the study. The daily variation of the average UFP concentrations for a typical nucleation day at each site revealed a similar pattern for all cities, with three distinct particle bursts. A morning and an evening spike reflected traffic rush hours, whereas a third one at midday showed nucleation events. The photochemically nucleated particles burst lasted 1-4 hours, reaching sizes of 30-40 nm. On average, the occurrence of particle size spectra dominated by nucleation events was 16% of the time, showing the importance of this process as a source of UFP in urban environments exposed to high solar radiation. On average, nucleation events lasting for 2 hours or more occurred on 55% of the days, this extending to >4hrs in 28% of the days, demonstrating that atmospheric conditions in urban environments are not favourable to the growth of photochemically nucleated particles. In summary, although traffic remains the main source of UFP in urban areas, in developed countries with high insolation urban nucleation events are also a main source of UFP. If traffic-related particle concentrations are reduced in the future, nucleation events will likely increase in urban areas, due to the reduced urban condensation sinks.
Resumo:
Emotional intelligence (EI) is defined as “the ability to recognise, understand and manage emotions in ourselves and others” [1]. Initially identified as a concept applied to leadership and management, EI is now recognised as an important skill in a number of areas, including healthcare [2]. Empathy (the ability to see the world through someone else’s eyes) is known to play an important role in the therapeutic relationship with patients [3]. As EI has been shown to improve empathy [4], it is clear that developing the EI of student health professionals should benefit patients in the long term. It is not surprising, then, that a number of studies have investigated the role of EI in medical, dental and nursing students, however there is little reported evidence relating to EI development in pre-registration radiation therapy (RT) students.
Resumo:
Purpose: Emotional intelligence (EI) is an increasingly important aspect of a health professional’s skill set. It is strongly associated with empathy, reflection and resilience; all key aspects of radiotherapy practice. Previous work in other disciplines has formed contradictory conclusions concerning development of EI over time. This study aimed to determine the extent to which EI can develop during a radiotherapy undergraduate course and identify factors affecting this. Methods and materials: This study used anonymous coded Likert-style surveys to gather longitudinal data from radiotherapy students relating to a range of self-perceived EI traits during their 3-year degree. Data were gathered at various points throughout the course from the whole cohort. Results: A total of 26 students provided data with 14 completing the full series of datasets. There was a 17·2% increase in self-reported EI score with a p-value<0·0001. Social awareness and relationship skills exhibited the greatest increase in scores compared with self-awareness. Variance of scores decreased over time; there was a reduced change in EI for mature students who tended to have higher initial scores. EI increase was most evident immediately after clinical placements. Conclusions: Radiotherapy students increase their EI scores during a 3-year course. Students reported higher levels of EI immediately after their clinical placement; radiotherapy curricula should seek to maximise on these learning opportunities.