291 resultados para PROTEIN-SYNTHESIZING MACHINERY
Resumo:
There is strong current interest in the use of biodegradable scaffolds in combination with bone growth factors as a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a preclinical ovine thoracic spine. The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post surgery.
Resumo:
A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 A˚, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced "leopard skin"-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions, can capture processes that are otherwise obscured to the amino acid-based formalism.
Resumo:
Protein molecular motors are natural nano-machines that convert the chemical energy from the hydrolysis of adenosine triphosphate into mechanical work. These efficient machines are central to many biological processes, including cellular motion, muscle contraction and cell division. The remarkable energetic efficiency of the protein molecular motors coupled with their nano-scale has prompted an increasing number of studies focusing on their integration in hybrid micro- and nanodevices, in particular using linear molecular motors. The translation of these tentative devices into technologically and economically feasible ones requires an engineering, design-orientated approach based on a structured formalism, preferably mathematical. This contribution reviews the present state of the art in the modelling of protein linear molecular motors, as relevant to the future design-orientated development of hybrid dynamic nanodevices. © 2009 The Royal Society of Chemistry.
Resumo:
Many areas of biochemistry and molecular biology, both fundamental and applications-orientated, require an accurate construction, representation and understanding of the protein molecular surface and its interaction with other, usually small, molecules. There are however many situations when the protein molecular surface gets in physical contact with larger objects, either biological, such as membranes, or artificial, such as nanoparticles. The contribution presents a methodology for describing and quantifying the molecular properties of proteins, by geometrical and physico-chemical mapping of the molecular surfaces, with several analytical relationships being proposed for molecular surface properties. The relevance of the molecular surface-derived properties has been demonstrated through the calculation of the statistical strength of the prediction of protein adsorption. It is expected that the extension of this methodology to other phenomena involving proteins near solid surfaces, in particular the protein interaction with nanoparticles, will result in important benefits in the understanding and design of protein-specific solid surfaces. © 2013 Nicolau et al.
Resumo:
Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.
Resumo:
The 19 kDa carboxyl-terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion-inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic-co-glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h1. High levels of gene expression and moderate cytotoxicity in COS-7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z-average hydrodynamic diameters of 1.50-2.10 lm and zeta potentials of 17.8-23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA-mediated microparticles can be employed as potential gene delivery systems to antigen-presenting cells in the prevention of malaria.
Resumo:
DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(d,l-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 μm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.
Resumo:
DNA may take a leading role in a future generation of blockbuster therapeutics. DNA has inherent advantages over other biomolecules such as protein, RNA and virus-like particles including safety, production simplicity and higher stability at ambient temperatures. Vaccination is the principal measure for preventing influenza and reducing the impact of pandemics; however, vaccines take up to 8-9 months to produce, and the global production capacity is woefully low. With production times as short as 2 weeks, improved safety and stability, bioprocess engineering developments, and the ability to perform numerous therapeutic roles, DNA has the potential to meet the demands of emerging and existing diseases. DNA is experiencing sharp growths in demand as indicated by its use in gene therapy trials and DNA vaccine related patents. Of particular interest for therapeutic use is plasmid DNA (pDNA), a form of non-genomic DNA that makes use of cellular machinery to express proteins or antigens. The production stages of fermentation and downstream purification are considered in this article. Forward looking approaches to purifying and delivering DNA are reported, including affinity chromatography and nasal inhalation. The place that pDNA may take in the preparation for and protection against pandemics is considered. If DNA therapeutics and vaccines prove to be effective, the ultimate scale of production will be huge which shall require associated bioprocess engineering research and development for purification of this large, unique biomolecule.
Resumo:
Background The adsorption of bovine serum albumin (BSA) onto mesoporous silica spheres (MPS) synthesized from silica colloids was studied employing real time in situ measurements. The stabilities of the BSA at different pH values, their isoelectric points and zeta potentials were determined in order to probe the interactions between the protein and the mesoporous silica. Results The pore size of MPS was designed for protein, and this, coupled with an in depth understanding of the physico-chemical characteristics of the protein and MPS has yielded a better binding capacity and delivery profile. The adsorption isotherm at pH 4.2 fitted the Langmuir model and displayed the highest adsorption capacity (71.43 mg mL-1 MPS). Furthermore, the delivery rates of BSA from the MPS under physiological conditions were shown to be dependent on the ionic strength of the buffer and protein loading concentration. Conclusion Economics and scale-up considerations of mesoporous material synthesized via destabilization of colloids by electrolyte indicate the scaleability and commercial viability of this technology as a delivery platform for biopharmaceutical applications.
Resumo:
Improved biopharmaceutical delivery may be achieved via the use of biodegradable microspheres as delivery vehicles. Biodegradable microspheres offer the advantages of maintaining sustained protein release over time whilst simultaneously protecting the biopharmaceutical from degradation. Particle samples produced by ultrasonic atomization were studied in order to determine a feed stock capable of producing protein loaded poly-ε-caprolactone (PCL) particles suitable for nasal delivery (i.e., less than 20 μm). A 40 kHz atomization system was used with a 6 mm full wave atomization probe. The effect of solids percent, feed flow rate, volumetric ratio of the polymer stock to the protein stock, and protein concentration in the protein stock on particle size characteristics were determined. It was shown that feed stocks containing 100 parts of 0.5 or 1.0% w/v PCL in acetone with one part 100 mg ml -1 BSA and 15 mg ml -1 PVA produced particles with a mass moment diameter (D[4,3]) of 13.17 μm and 9.10 μm, respectively in addition to displaying high protein encapsulation efficiencies of 93 and 95%, respectively. The biodegradable PCL particles were shown to be able to deliver encapsulated protein in vitro under physiological conditions.
Resumo:
Methods are presented for the preparation, ligand density analysis and use of an affinity adsorbent for the purification of a glutathione S-transferase (GST) fusion protein in packed and expanded bed chromatographic processes. The protein is composed of GST fused to a zinc finger transcription factor (ZnF). Glutathione, the affinity ligand for GST purification, is covalently immobilized to a solid-phase adsorbent (Streamline™). The GST–ZnF fusion protein displays a dissociation constant of 0.6 x10-6 M to glutathione immobilized to Streamline™. Ligand density optimization, fusion protein elution conditions (pH and glutathione concentration) and ligand orientation are briefly discussed.
Resumo:
Methods are presented for the production, affinity purification and analysis of plasmid DNA (pDNA). Batch fermentation is used for the production of the pDNA, and expanded bed chromatography, via the use of a dual affinity glutathione S-transferase (GST) fusion protein, is used for the capture and purification of the pDNA. The protein is composed of GST, which displays affinity for glutathione immobilized to a solid-phase adsorbent, fused to a zinc finger transcription factor, which displays affinity for a target 9-base pair sequence contained within the target pDNA. A Picogreen™ fluorescence assay and/or anx ethidium bromide agarose gel electrophoresis assay can be used to analyze the eluted pDNA.
Resumo:
Macrophages have the capacity to rapidly secrete a wide range of inflammatory mediators that influence the development and extent of an inflammatory response. Newly synthesized and/or preformed stored cytokines and other inflammatory mediators are released upon stimulation, the timing, and volume of which is highly regulated. To finely tune this process, secretion is regulated at many levels; at the level of transcription and translation and post-translationally at the endoplasmic reticulum (ER), Golgi, and at or near the cell surface. Here, we discuss recent advances in deciphering these cytokine pathways in macrophages, focusing on recent discoveries regarding the cellular machinery and mechanisms implicated in the synthesis, trafficking, and secretion of cytokines. The specific roles of trafficking machinery including chaperones, GTPases, cytoskeletal proteins, and SNARE membrane fusion proteins will be discussed.