247 resultados para Microscopy of materials


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A highly extended dithienothiophene comonomer building block was used in combination with highly fused aromatic furan substituted diketopyrrolopyrrole for the synthesis of novel donor–acceptor alternating copolymer PDPPF-DTT. Upon testing PDPPF-DTT as a channel semiconductor in top contact bottom gate organic field effect transistors (OFETs), it was found to exhibit p-channel behaviour. The highest hole mobility of 3.56 cm2 V−1 s−1 was reported for PDPPF-DTT. To our knowledge, this is the highest mobility reported so far for the furan flanked diketopyrrolopyrrole class of copolymers using conventional device geometry with straightforward processing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The construction industry accounts for a significant portion of the material consumption of our industrialised societies. That material consumption comes at an environmental cost, and when buildings and infrastructure projects are demolished and discarded, after their useful lifespan, that environmental cost remains largely unrecovered. The expected operational lifespan of modern buildings has become disturbingly short as buildings are replaced for reasons of changing cultural expectations, style, serviceability, locational obsolescence and economic viability. The same buildings however are not always physically or structurally obsolete; the materials and components within them are very often still completely serviceable. While there is some activity in the area of recycling of selected construction materials, such as steel and concrete, this is almost always in the form of down cycling or reprocessing. Very little of this material and component resource is reuse in a way that more effectively captures its potential. One significant impediment to such reuse is that buildings are not designed in a way that facilitates easy recovery of materials and components; they are designed and built for speed of construction and quick economic returns, with little or no consideration of the longer term consequences of their physical matter. This research project explores the potential for the recovery of materials and components if buildings were designed for such future recovery; a strategy of design for disassembly. This is not a new design philosophy; design for disassembly is well understood in product design and industrial design. There are also some architectural examples of design for disassembly; however these are specialist examples and there is no significant attempt to implement the strategy in the main stream construction industry. This paper presents research into the analysis of the embodied energy in buildings, highlighting its significance in comparison with operational energy. Analysis at material, component, and whole-of-building levels shows the potential benefits of strategically designing buildings for future disassembly to recover this embodied energy. Careful consideration at the early design stage can result in the deconstruction of significant portions of buildings and the recovery of their potential through higher order reuse and upcycling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wetmechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) and graphene are two representative nanomaterials comprised of purely element carbon [1,2]. Graphene is the two-dimensional, hexagonal sp2-carbon ring networks with one atomic layer thickness, while CNTs can be envisaged as one or several graphene sheets concentrically rolled up into a one-dimensional cylindrical structure, so-called singlewalled (SW) or multi-walled (MW) CNTs, respectively. Figure 12.1 shows the schematic diagram of structures of graphene, SWCNT and MWCNT. Owing to their exceptional mechanical, electrical, optical and thermal properties, CNTs and graphene have been widely considered as a new type of materials with great potentials to revolutionalize many of the biological and medical fields [3–5].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Additive manufacturing forms a potential route towards economically viable production of cellular constructs for tissue engineering. Hydrogels are a suitable class of materials for cell delivery and 3D culture, but are generally unsuitable as construction materials. Gelatine-methacrylamide is an example of such a hydrogel system widely used in the field of tissue engineering, e.g. for cartilage and cardiovascular applications. Here we show that by the addition of gellan gum to gelatine-methacrylamide and tailoring salt concentrations, rheological properties such as pseudo-plasticity and yield stress can be optimised towards gel dispensing for additive manufacturing processes. In the hydrogel formulation, salt is partly substituted by mannose to obtain isotonicity and prevent a reduction in cell viability. With this, the potential of this new bioink for additive tissue manufacturing purposes is demonstrated.