726 resultados para Long digital extensor tendon
Resumo:
Background Techniques for detecting circulating tumor cells in the peripheral blood of patients with head and neck cancers may identify individuals likely to benefit from early systemic treatment. Methods Reconstruction experiments were used to optimise immunomagnetic enrichment and RT-PCR detection of circulating tumor cells using four markers (ELF3, CK19, EGFR and EphB4). This method was then tested in a pilot study using samples from 16 patients with advanced head and neck carcinomas. Results Seven patients were positive for circulating tumour cells both prior to and after surgery, 4 patients were positive prior to but not after surgery, 3 patients were positive after but not prior to surgery and 2 patients were negative. Two patients tested positive for circulating cells but there was no other evidence of tumor spread. Given this patient cohort had mostly advanced disease, as expected the detection of circulating tumour cells was not associated with significant differences in overall or disease free survival. Conclusion For the first time, we show that almost all patients with advanced head and neck cancers have circulating cells at the time of surgery. The clinical application of techniques for detection of spreading disease, such as the immunomagnetic enrichment RT-PCR analysis used in this study, should be explored further.
Resumo:
Signal Processing (SP) is a subject of central importance in engineering and the applied sciences. Signals are information-bearing functions, and SP deals with the analysis and processing of signals (by dedicated systems) to extract or modify information. Signal processing is necessary because signals normally contain information that is not readily usable or understandable, or which might be disturbed by unwanted sources such as noise. Although many signals are non-electrical, it is common to convert them into electrical signals for processing. Most natural signals (such as acoustic and biomedical signals) are continuous functions of time, with these signals being referred to as analog signals. Prior to the onset of digital computers, Analog Signal Processing (ASP) and analog systems were the only tool to deal with analog signals. Although ASP and analog systems are still widely used, Digital Signal Processing (DSP) and digital systems are attracting more attention, due in large part to the significant advantages of digital systems over the analog counterparts. These advantages include superiority in performance,s peed, reliability, efficiency of storage, size and cost. In addition, DSP can solve problems that cannot be solved using ASP, like the spectral analysis of multicomonent signals, adaptive filtering, and operations at very low frequencies. Following the recent developments in engineering which occurred in the 1980's and 1990's, DSP became one of the world's fastest growing industries. Since that time DSP has not only impacted on traditional areas of electrical engineering, but has had far reaching effects on other domains that deal with information such as economics, meteorology, seismology, bioengineering, oceanology, communications, astronomy, radar engineering, control engineering and various other applications. This book is based on the Lecture Notes of Associate Professor Zahir M. Hussain at RMIT University (Melbourne, 2001-2009), the research of Dr. Amin Z. Sadik (at QUT & RMIT, 2005-2008), and the Note of Professor Peter O'Shea at Queensland University of Technology. Part I of the book addresses the representation of analog and digital signals and systems in the time domain and in the frequency domain. The core topics covered are convolution, transforms (Fourier, Laplace, Z. Discrete-time Fourier, and Discrete Fourier), filters, and random signal analysis. There is also a treatment of some important applications of DSP, including signal detection in noise, radar range estimation, banking and financial applications, and audio effects production. Design and implementation of digital systems (such as integrators, differentiators, resonators and oscillators are also considered, along with the design of conventional digital filters. Part I is suitable for an elementary course in DSP. Part II (which is suitable for an advanced signal processing course), considers selected signal processing systems and techniques. Core topics covered are the Hilbert transformer, binary signal transmission, phase-locked loops, sigma-delta modulation, noise shaping, quantization, adaptive filters, and non-stationary signal analysis. Part III presents some selected advanced DSP topics. We hope that this book will contribute to the advancement of engineering education and that it will serve as a general reference book on digital signal processing.
Resumo:
The emergence of mobile and ubiquitous computing has created what is referred to as a hybrid space – a virtual layer of digital information and interaction opportunities that sits on top and augments the physical environment. The increasing connectedness through such media, from anywhere to anybody at anytime, makes us less dependent on being physically present somewhere in particular. But, what is the role of ubiquitous computing in making physical presence at a particular place more attractive? Acknowledging historic context and identity as important attributes of place, this work embarks on a ‘global sense of place’ in which the cultural diversity, multiple identities, backgrounds, skills and experiences of people traversing a place are regarded as social assets of that place. The aim is to explore ways how physical architecture and infrastructure of a place can be mediated towards making invisible social assets visible, thus augmenting people’s situated social experience. Thereby, the focus is on embodied media, i.e. media that materialise digital information as observable and sometimes interactive parts of the physical environment hence amplify people’s real world experience, rather than substituting or moving it to virtual spaces.
Resumo:
The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.
Resumo:
The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.
Resumo:
Language is a unique aspect of human communication because it can be used to discuss itself in its own terms. For this reason, human societies potentially have superior capacities of co-ordination, reflexive self-correction, and innovation than other animal, physical or cybernetic systems. However, this analysis also reveals that language is interconnected with the economically and technologically mediated social sphere and hence is vulnerable to abstraction, objectification, reification, and therefore ideology – all of which are antithetical to its reflexive function, whilst paradoxically being a fundamental part of it. In particular, in capitalism, language is increasingly commodified within the social domains created and affected by ubiquitous communication technologies. The advent of the so-called ‘knowledge economy’ implicates exchangeable forms of thought (language) as the fundamental commodities of this emerging system. The historical point at which a ‘knowledge economy’ emerges, then, is the critical point at which thought itself becomes a commodified ‘thing’, and language becomes its “objective” means of exchange. However, the processes by which such commodification and objectification occurs obscures the unique social relations within which these language commodities are produced. The latest economic phase of capitalism – the knowledge economy – and the obfuscating trajectory which accompanies it, we argue, is destroying the reflexive capacity of language particularly through the process of commodification. This can be seen in that the language practices that have emerged in conjunction with digital technologies are increasingly non-reflexive and therefore less capable of self-critical, conscious change.
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
This chapter explores some of the practical and theoretical obstacles and opportunities for self-expression experienced by a group of Queer Dig- ital Storytellers who primarily make and distribute their stories online. “Queer” in this chapter encompasses a diverse range of gender and sexual identities and perspectives on same, including the heterosexual children of queer parents and heterosexual parents of queer children. As such it is also used as a unifying moniker by participants in the Rainbow Family Tree case study that is examined in this chapter. The Digital Storytellers in this case study are largely motivated by a desire to have an impact on social attitudes towards gender and sexuality, both in their personal province of friends and family, and in public domains constituted of unknown or invisible audiences. The privacy and publicity dilemmas that will be considered arise out of positioning personal stories in the public domain and the quandaries that emerge from an activist desire to speak truth to power that is located across a wide cross section of audiences.
Resumo:
This article examines social, cultural and technological change in the systems and economies of educational information management. Since the Sumerians first collected, organized and supervised administrative and religious records some six millennia ago, libraries have been key physical depositories and cultural signifiers in the production and mediation of social capital and power through education. To date, the textual, archival and discursive practices perpetuating libraries have remained exempt from inquiry. My aim here is to remedy this hiatus by making the library itself the terrain and object of critical analysis and investigation. The paper argues that in the three dominant communications eras—namely, oral, print and digital cultures—society’s centres of knowledge and learning have resided in the ceremony, the library and the cybrary respectively. In a broad-brush historical grid, each of these key educational institutions—the ceremony in oral culture, the library in print culture and the cybrary in digital culture—are mapped against social, cultural and technological orders pertaining to their era. Following a description of these shifts in society’s collective cultural memory, the paper then examines the question of what the development of global information systems and economies mean for schools and libraries of today, and for teachers and learners as knowledge consumers and producers?
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
Recent theoretical research has shown that ocean currents and wind interact to disperse seeds over long distances among isolated landmasses. Dispersal of seeds among isolated oceanic islands, by birds, oceans and man, is a well-known phenomenon, and many widespread island plants have traits that facilitate this process. Crucially, however, there have been no mechanistic vector-based models of long-distance dispersal for seeds among isolated oceanic islands based on empirical data. Here, we propose a plan to develop seed analogues, or pseudoseeds, fitted with wireless sensor technology that will enable high-fidelity tracking as they disperse across the ocean. The pseudoseeds will be precisely designed to mimic actual seed buoyancy and morphology enabling realistic and accurate, vector-based dispersal models of ocean seed dispersal over vast geographic scales.