693 resultados para Cultural recognition
Resumo:
Summary of the larger report of the same name
Resumo:
The paper attempts to give a concise history of the concept and outline some of the definitional problems that have arisen and have hampered policy-makers.
Resumo:
This thesis reports on a study in which research participants, four mature aged females starting an undergraduate degree at a regional Australian university, collaborated with the researcher in co-constructing a self-efficacy narrative. For the purpose of the study, self-efficacy was conceptualized as a means by which an individual initiates action to engage in a task or set of tasks, applies effort to perform the task or set of tasks, and persists in the face of obstacles encountered in order to achieve successful completion of the task or set of tasks. Qualitative interviews were conducted with the participants, initially investigating their respective life histories for an understanding of how they made the decision to embark on their respective academic program. Additional data were generated from a written exercise, prompting participants to furnish specific examples of self-efficacy. These data were incorporated into the individual's self-efficacy narrative, produced as the outcome of the "narrative analysis". Another aspect of the study entailed "analysis of narrative" in which analytic procedures were used to identify themes common to the self-efficacy narratives. Five main themes were identified: (a) participants' experience of schooling . for several participants their formative experience of school was not always positive, and yet their narratives demonstrated their agency in persevering and taking on university-level studies as mature aged persons; (b) recognition of family as an early influence . these influences were described as being both positive, in the sense of being supportive and encouraging, as well as posing obstacles that participants had to overcome in order to pursue their goals; (c) availability of supportive persons – the support of particular persons was acknowledged as a factor that enabled participants to persist in their respective endeavours; (d) luck or chance factors were recognised as placing participants at the right place at the right time, from which circumstances they applied considerable effort in order to convert the opportunity into a successful outcome; and (e) self-efficacy was identified as a major theme found in the narratives. The study included an evaluation of the research process by participants. A number of themes were identified in respect of the manner in which the research process was experienced as a helpful process. Participants commented that: (a) the research process was helpful in clarifying their respective career goals; (b) they appreciated opportunities provided by the research process to view their life from a different perspective and to better understand what motivated them, and what their preferred learning styles were; (c) their past successes in a range of different spheres were made more evident to them as they were guided in self-reflection, and their self-efficacious behaviour was affirmed; and (d) the opportunities provided by their participation in the research process to identify strengths of which they had not been consciously aware, to find confirmation of strengths they knew they possessed, and in some instances to rectify misconceptions they had held about aspects of their personality. The study made three important contributions to knowledge. Firstly, it provided a detailed explication of a qualitative narrative method in exploring self-efficacy, with the potential for application to other issues in educational, counselling and psychotherapy research. Secondly, it consolidated and illustrated social cognitive theory by proposing a dynamic model of self-efficacy, drawing on constructivist and interpretivist paradigms and extending extant theory and models. Finally, the study made a contribution to the debate concerning the nexus of qualitative research and counselling by providing guidelines for ethical practice in both endeavours for the practitioner-researcher.
Resumo:
Facial expression recognition (FER) algorithms mainly focus on classification into a small discrete set of emotions or representation of emotions using facial action units (AUs). Dimensional representation of emotions as continuous values in an arousal-valence space is relatively less investigated. It is not fully known whether fusion of geometric and texture features will result in better dimensional representation of spontaneous emotions. Moreover, the performance of many previously proposed approaches to dimensional representation has not been evaluated thoroughly on publicly available databases. To address these limitations, this paper presents an evaluation framework for dimensional representation of spontaneous facial expressions using texture and geometric features. SIFT, Gabor and LBP features are extracted around facial fiducial points and fused with FAP distance features. The CFS algorithm is adopted for discriminative texture feature selection. Experimental results evaluated on the publicly accessible NVIE database demonstrate that fusion of texture and geometry does not lead to a much better performance than using texture alone, but does result in a significant performance improvement over geometry alone. LBP features perform the best when fused with geometric features. Distributions of arousal and valence for different emotions obtained via the feature extraction process are compared with those obtained from subjective ground truth values assigned by viewers. Predicted valence is found to have a more similar distribution to ground truth than arousal in terms of covariance or Bhattacharya distance, but it shows a greater distance between the means.
Resumo:
Objective: To examine whether health professionals who commonly deal with mental disorder are able to identify co occurring alcohol misuse in young people presenting with depression. Method: Between September 2006 and January 2007, a survey examining beliefs regarding appropriate interventions for mental disorder in youth was sent to 1710 psychiatrists, 2000 general practitioners (GPs), 1628 mental health nurses, and 2000 psychologists in Australia. Participants within each professional group were randomly given one of four vignettes describing a young person with a DSM-IV mental disorder. Herein is reported data from the depression and depression with alcohol misuse vignettes. Results: A total of 305 psychiatrists, 258 GPs, 292 mental health nurses and 375 psychologists completed one of the depression vignettes. A diagnosis of mood disorder was identified by at least 83.8% of professionals, with no significant differences noted between professional groups. Rates of reported co-occurring substance use disorders were substantially lower, particularly among older professionals and psychologists. Conclusions: GPs, psychologists and mental health professionals do not readily identify co-occurring alcohol misuse in young people with depression. Given the substantially negative impact of co-occurring disorders, it is imperative that health-care professionals are appropriately trained to detect such disorders promptly, to ensure young people have access to effective, early intervention.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
Features derived from the trispectra of DFT magnitude slices are used for multi-font digit recognition. These features are insensitive to translation, rotation, or scaling of the input. They are also robust to noise. Classification accuracy tests were conducted on a common data base of 256× 256 pixel bilevel images of digits in 9 fonts. Randomly rotated and translated noisy versions were used for training and testing. The results indicate that the trispectral features are better than moment invariants and affine moment invariants. They achieve a classification accuracy of 95% compared to about 81% for Hu's (1962) moment invariants and 39% for the Flusser and Suk (1994) affine moment invariants on the same data in the presence of 1% impulse noise using a 1-NN classifier. For comparison, a multilayer perceptron with no normalization for rotations and translations yields 34% accuracy on 16× 16 pixel low-pass filtered and decimated versions of the same data.
Resumo:
In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image
Resumo:
An application of image processing techniques to recognition of hand-drawn circuit diagrams is presented. The scanned image of a diagram is pre-processed to remove noise and converted to bilevel. Morphological operations are applied to obtain a clean, connected representation using thinned lines. The diagram comprises of nodes, connections and components. Nodes and components are segmented using appropriate thresholds on a spatially varying object pixel density. Connection paths are traced using a pixel-stack. Nodes are classified using syntactic analysis. Components are classified using a combination of invariant moments, scalar pixel-distribution features, and vector relationships between straight lines in polygonal representations. A node recognition accuracy of 82% and a component recognition accuracy of 86% was achieved on a database comprising 107 nodes and 449 components. This recogniser can be used for layout “beautification” or to generate input code for circuit analysis and simulation packages
Resumo:
Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.
Resumo:
The performance of automatic speech recognition systems deteriorates in the presence of noise. One known solution is to incorporate video information with an existing acoustic speech recognition system. We investigate the performance of the individual acoustic and visual sub-systems and then examine different ways in which the integration of the two systems may be performed. The system is to be implemented in real time on a Texas Instruments' TMS320C80 DSP.