252 resultados para Temporal acoustic window
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
Lateralization of temporal lobe epilepsy (TLE) is critical for successful outcome of surgery to relieve seizures. TLE affects brain regions beyond the temporal lobes and has been associated with aberrant brain networks, based on evidence from functional magnetic resonance imaging. We present here a machine learning-based method for determining the laterality of TLE, using features extracted from resting-state functional connectivity of the brain. A comprehensive feature space was constructed to include network properties within local brain regions, between brain regions, and across the whole network. Feature selection was performed based on random forest and a support vector machine was employed to train a linear model to predict the laterality of TLE on unseen patients. A leave-one-patient-out cross validation was carried out on 12 patients and a prediction accuracy of 83% was achieved. The importance of selected features was analyzed to demonstrate the contribution of resting-state connectivity attributes at voxel, region, and network levels to TLE lateralization.
Resumo:
Vertical windows are the most common and simplest method to introduce daylight to interior spaces of office buildings, while also providing a view and connection to the outside. However, high contrast ratios between windows and surrounding surfaces can cause visual discomfort for occupants and can negatively influence their health and productivity. Consequently, building occupants may try to adapt their working environment through closing blinds and turning on lights in order to improve indoor visual comfort. Such interventions defeat the purpose of daylight harvesting systems and can increase the forecast electric lighting consumption in buildings that include such systems. A simple strategy to prevent these problematic consequences is to reduce the luminance contrasts presented by the window wall by increasing the luminance of areas surrounding the window through the sparing use of energy-efficient supplementary lighting, such light emitting diodes (LEDs). This paper presents the result of a pilot study in typical office in Brisbane, Australia that tests the effectiveness of a supplementary LED lighting system. The study shows an improvement in the appraisal of the visual environment is achieved using the supplementary system, along with up to 88% reductions in luminance contrast at the window wall. Also observed is a 36% reduction in the likelihood of user interventions that would increase energy usage. These results are used as the basis of an annual energy simulation of the test office and indicate that supplementary systems could be used to save energy beyond what is typically realised in side lit office spaces.
Resumo:
This project was a step forward in applying statistical methods and models to provide new insights for more informed decision-making at large spatial scales. The model has been designed to address complicated effects of ecological processes that govern the state of populations and uncertainties inherent in large spatio-temporal datasets. Specifically, the thesis contributes to better understanding and management of the Great Barrier Reef.
Resumo:
High contrast ratios between windows and surrounding surfaces could cause reduced visibility or discomfort for occupants. Consequently, building users may choose to intervene in lighting conditions through closing blinds and turning on the lamps in order to enhance indoor visual comfort. Such interventions increase projected electric lighting use in buildings. One simple method to prevent these problematic issues is increasing the luminance of the areas surrounding to the bright surface of windows through the use of energy-efficient supplementary lighting, such Light Emitting Diodes (LEDs). This paper reports on the results of a pilot study in conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system of approximately 18 W could reduce the luminance contrast on the window wall from values in the order of 117:1 to 33:1. In addition, the results of this experiment suggested that this supplementary strategy could increase the subjective scale appraisal of window appearance by approximately 33%, as well as reducing the likelihood of users’ intention to turn on the ceiling lights by about 27%. It could also diminish the likelihood of occupants’ intention to move the blind down by more than 90%.
Resumo:
The window of opportunity is a concept critical to rheumatoid arthritis treatment. Early treatment changes the outcome of rheumatoid arthritis treatment, in that response rates are higher with earlier disease-modifying anti-rheumatic drug treatment and damage is substantially reduced. Axial spondyloarthritis is an inflammatory axial disease encompassing both nonradiographic axial spondyloarthritis and established ankylosing spondylitis. In axial spondyloarthritis, studies of magnetic resonance imaging as well as tumor necrosis factor inhibitor treatment and withdrawal studies all suggest that early effective suppression of inflammation has the potential to reduce radiographic damage. This potential would suggest that the concept of a window of opportunity is relevant not only to rheumatoid arthritis but also to axial spondyloarthritis. The challenge now remains to identify high-risk patients early and to commence treatment without delay. Developments in risk stratification include new classification criteria, identification of clinical risk factors, biomarkers, genetic associations, potential antibody associations and an ankylosing spondylitis-specific microbiome signature. Further research needs to focus on the evidence for early intervention and the early identification of high-risk individuals.
Resumo:
Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.
Resumo:
Contamination of pesticides, which are applied to rice paddy fields, in river water has been a major problem in Japan for decades. A prolonged water holding period after pesticide application in paddy fields is expected to reduce the concentration of rice pesticides in river water. Therefore, a long monitoring campaign was conducted from 2004 to 2010 to measure the concentrations of pesticides in water samples collected from several points along the Chikugo River (Japan) including tributaries and the main stream to see if there was any reduction in the level of pesticide contamination after the extension of the water holding period (from 3–4 days to 7 days) was introduced in 2007 by the new water management regulation. No significant difference (p > 0.05) was found in pesticide concentrations between the periods before and after 2007 in all monitoring points, except in one tributary where the pesticide concentrations after 2007 were even higher than that of the previous period. A detailed study in one of the tributaries also revealed that the renovated infrastructure did not reduce the pesticide concentrations in the drainage canals. Neither the introduction of the new regulation nor the improved infrastructure had any significant effect on reducing the contamination of pesticides in water of the Chikugo River. It is probably because most farmers did not properly implement the new requirement of holding paddy water within the field for 7 days after the application of pesticides. Only tightening the regulation would not be sufficient and more actions should be taken to enforce/provide extension support for the new water management regulation in order to reduce the level of residual pesticides in river water in Japan.
Resumo:
Giant Cell Arteritis (GCA) is the most common vasculitis affecting the elderly. Archived formalin-fixed paraffin-embedded (FFPE) temporal artery biopsy (TAB) specimens potentially represent a valuable resource for large-scale genetic analysis of this disease. FFPE TAB samples were obtained from 12 patients with GCA. Extracted TAB DNA was assessed by real time PCR before restoration using the Illumina HD FFPE Restore Kit. Paired FFPE-blood samples were genotyped on the Illumina OmniExpress FFPE microarray. The FFPE samples that passed stringent quality control measures had a mean genotyping success of >97%. When compared with their matching peripheral blood DNA, the mean discordant heterozygote and homozygote single nucleotide polymorphisms calls were 0.0028 and 0.0003, respectively, which is within the accepted tolerance of reproducibility. This work demonstrates that it is possible to successfully obtain high-quality microarray-based genotypes FFPE TAB samples and that this data is similar to that obtained from peripheral blood.
Resumo:
This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.
Resumo:
Acoustic classification of anurans (frogs) has received increasing attention for its promising application in biological and environment studies. In this study, a novel feature extraction method for frog call classification is presented based on the analysis of spectrograms. The frog calls are first automatically segmented into syllables. Then, spectral peak tracks are extracted to separate desired signal (frog calls) from background noise. The spectral peak tracks are used to extract various syllable features, including: syllable duration, dominant frequency, oscillation rate, frequency modulation, and energy modulation. Finally, a k-nearest neighbor classifier is used for classifying frog calls based on the results of principal component analysis. The experiment results show that syllable features can achieve an average classification accuracy of 90.5% which outperforms Mel-frequency cepstral coefficients features (79.0%).
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
Over past few decades, frog species have been experiencing dramatic decline around the world. The reason for this decline includes habitat loss, invasive species, climate change and so on. To better know the status of frog species, classifying frogs has become increasingly important. In this study, acoustic features are investigated for multi-level classification of Australian frogs: family, genus and species, including three families, eleven genera and eighty five species which are collected from Queensland, Australia. For each frog species, six instances are selected from which ten acoustic features are calculated. Then, the multicollinearity between ten features are studied for selecting non-correlated features for subsequent analysis. A decision tree (DT) classifier is used to visually and explicitly determine which acoustic features are relatively important for classifying family, which for genus, and which for species. Finally, a weighted support vector machines (SVMs) classifier is used for the multi- level classification with three most important acoustic features respectively. Our experiment results indicate that using different acoustic feature sets can successfully classify frogs at different levels and the average classification accuracy can be up to 85.6%, 86.1% and 56.2% for family, genus and species respectively.
Resumo:
Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.