247 resultados para ScienceDirect
Resumo:
Road transport plays a significant role in various industries and mobility services around the globe and has a vital impact on our daily lives. However it also has serious impacts on both public health and the environment. In-vehicle feedback systems are a relatively new approach to encouraging driver behavior change for improving fuel efficiency and safety in automotive environments. While many studies claim that the adoption of eco-driving practices, such as eco-driving training programs and in-vehicle feedback to drivers, has the potential to improve fuel efficiency, limited research has integrated safety and eco-driving. Therefore, it is crucial to understand the human factors related theories and practices which will inform the design of an in-vehicle Human Machine Interface (HMI) that could provide real-time driver feedback and consequently improve both fuel efficiency and safety. This paper provides a comprehensive review of the current state of published literature on in-vehicle systems to identify and evaluate the impact of eco-driving and safety feedback systems. This paper also discusses how these factors may conflict with one another and have a negative effect on road safety, while also exploring possible eco-driving practices that could encourage more sustainable, environmentally-conscious and safe driving behavior. The review revealed a lack of comprehensive theoretical research integrating eco-driving and safe driving, and no current available HMI covering both aspects simultaneously. Furthermore, the review identified that some eco-driving in-vehicle systems may enhance fuel efficiency without compromising safety. The review has identified a range of concepts which can be developed to influence driver acceptance of safety and eco-driving systems within the area of HMI. This can promote new research aimed at enhancing our understanding of the relationship between eco-driving and safety from the human factors viewpoint. This provides a foundation for developing innovative, persuasive and acceptable in-vehicle HMI systems to improve fuel efficiency and road safety.
Resumo:
Hot air ballooning incidents are relatively rare; however, they have a high potential to be fatal. In order to inform appropriate safety interventions it is first necessary to understand the causal factors which lead to incidents and near-misses, which requires a formal incident report database. The Australian Balloon Federation (ABF) advocates the reporting of recreational hot air ballooning incidents, by reporting directly to the ABF safety officer or by completing an online incident report form. The objective of this paper is to understand how widely used the reporting system is and whether there are any perceived barriers to reporting. Sixty-nine balloonists participated in an online survey about their experience of incident reporting. Survey respondents were mostly male (11 female), experienced balloonists (mean years’ experience ballooning 19.51y with a SD 11.19). Sixty respondents (87%) held a pilot license. The majority (82.6%) of respondents were aware of the ABF incident reporting system. Over half (62.3%) had been involved in a ballooning incident or near-miss in Australia. However, 40% of those who had an incident or near-miss did not report it to the ABF and only 15.9% of all those surveyed had used the online incident report form. There was some disagreement regarding when it was appropriate to report an incident or near miss. Some respondents felt an incident or near miss should only be reported if it resulted in injury or damage, while others said near-misses should also be reported. The most frequent barriers identified were: a lack of understanding of when to report to the ABF; trivializing of incidents; and concerns about the system itself Steps should be taken to increase understanding of the system purpose and long term benefits. Specifically, reporting near-misses should be encouraged. This study is significant because it is the first to examine reporting practices in non-motorised recreational aviation.
Resumo:
Safety culture is a term with numerous definitions in the literature. Many authors advocate a prescriptive approach to safety culture in which if an organisation has certain levels of externally prescribed systems and structures in place it has a “good safety culture”. Conversely, other researchers suggest an anthropological approach of exploring deep meanings and understandings present within an organisation’s workforce. In a recent published review, the authors presented an alternative view to safety culture, in which the anthropological aspects of safety culture interact with the structures and systems in place within an organisation to result in behavioural patterns. This can be viewed as a human factors approach to safety culture in which, through understanding the specific interactions between the culture of a workforce and external organisational elements, organisational structures and systems can be optimised in order to shape worker behaviour and improve safety. This paper presents findings from a recent investigation of safety culture in the Australian heavy vehicle (transport) industry. Selected results are discussed to explore how understanding culture can provide direction to the optimisation of organisational structures and systems to match worker culture and thus improve safety. Specifically the value placed on personal experience and stories, as well as on both time and money are discussed, and interventions that are suited to these aspects of the culture are discussed. These findings demonstrate the importance of shifting beyond mere prescriptive and interpretive approaches to safety culture and instead to focus on the interaction between cultural and contextual elements to optimise organisational structures and systems.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided active level crossings with flashing lights; and passive level crossings controlled by stop and give way signs. The current strategy is to annually upgrade passive level crossings with active controls within a given budget, but the 5,900 public passive crossings are too numerous to be upgraded all. The rail industry is considering alternative options to treat more crossings. One of them is to use lower cost equipment with reduced safety integrity level, but with a design that would fail to a safe state: in case of the impossibility for the system to know whether a train is approaching, the crossing changes to a passive crossing. This is implemented by having a STOP sign coming in front of the flashing lights. While such design is considered safe in terms of engineering design, questions remain on human factors. In order to evaluate whether such approach is safe, we conducted a driving simulator study where participants were familiarized with the new active crossing, before changing the signage to a passive crossing. Our results show that drivers treated the new crossing as an active crossing after the novelty effect had passed. While most participants did not experience difficulties with the crossing being turned back to a passive crossing, a number of participants experienced difficulties stopping in time at the first encounter of such passive crossing. Worse, a number of drivers never realized the signage had changed, highlighting the link between the decision to brake and stop at an active crossing to the lights flashing. Such results show the potential human factor issues of changing an active crossing to a passive crossing in case of failure of the detection of the train.
Resumo:
Deterrence-based initiatives form a cornerstone of many road safety countermeasures. This approach is informed by Classical Deterrence Theory, which proposes that individuals will be deterred from committing offences if they fear the perceived consequences of the act, especially the perceived certainty, severity and swiftness of sanctions. While deterrence-based countermeasures have proven effective in reducing a range of illegal driving behaviours known to cause crashes such as speeding and drink driving, the exact level of exposure, and how the process works, remains unknown. As a result the current study involved a systematic review of the literature to identify theoretical advancements within deterrence theory that has informed evidence-based practice. Studies that reported on perceptual deterrence between 1950 and June 2015 were searched in electronic databases including PsychINFO and ScienceDirect, both within road safety and non-road safety fields. This review indicated that scientific efforts to understand deterrence processes for road safety were most intense during the 1970s and 1980s. This era produced competing theories that postulated both legal and non-legal factors can influence offending behaviours. Since this time, little theoretical progression has been made in the road safety arena, apart from Stafford and Warr's (1993) reconceptualisation of deterrence that illuminated the important issue of punishment avoidance. In contrast, the broader field of criminology has continued to advance theoretical knowledge by investigating a range of individual difference-based factors proposed to influence deterrent processes, including: moral inhibition, social bonding, self-control, tendencies to discount the future, etc. However, this scientific knowledge has not been directed towards identifying how to best utilise deterrence mechanisms to improve road safety. This paper will highlight the implications of this lack of progression and provide direction for future research.
Resumo:
Driving on an approach to a signalized intersection while distracted is relatively risky, as potential vehicular conflicts and resulting angle collisions tend to be relatively more severe compared to other locations. Given the prevalence and importance of this particular scenario, the objective of this study was to examine the decisions and actions of distracted drivers during the onset of yellow lights. Driving simulator data were obtained from a sample of 69 drivers under baseline and handheld cell phone conditions at the University of Iowa – National Advanced Driving Simulator. Explanatory variables included age, gender, cell phone use, distance to stop-line, and speed. Although there is extensive research on drivers’ responses to yellow traffic signals, the examinations have been conducted from a traditional regression-based approach, which do not necessary provide the underlying relations and patterns among the sampled data. In this paper, we exploit the benefits of both classical statistical inference and data mining techniques to identify the a priori relationships among main effects, non-linearities, and interaction effects. Results suggest that the probability of yellow light running increases with the increase in driving speed at the onset of yellow. Both young (18–25 years) and middle-aged (30–45 years) drivers reveal reduced propensity for yellow light running whilst distracted across the entire speed range, exhibiting possible risk compensation during this critical driving situation. The propensity for yellow light running for both distracted male and female older (50–60 years) drivers is significantly higher. Driver experience captured by age interacts with distraction, resulting in their combined effect having slower physiological response and being distracted particularly risky.
Resumo:
Theories of individual attitudes toward IT include task technology fit (TTF), technology acceptance model (TAM), unified theory of acceptance and use of technology (UTAUT), cognitive fit, expectation disconfirmation, and computer self-efficacy. Examination of these theories reveals three main concerns. First, the theories mostly ‘‘black box’’ (or omit) the IT artifact. Second, appropriate mid-range theory is not developed to contribute to disciplinary progress and to serve the needs of our practitioner community. Third, theories are overlapping but incommensurable. We propose a theoretical framework that harmonizes these attitudinal theories and shows how they can be specialized to include relevant IS phenomenon.
Resumo:
Human factors such as distraction, fatigue, alcohol and drug use are generally ignored in car-following (CF) models. Such ignorance overestimates driver capability and leads to most CF models’ inability in realistically explaining human driving behaviors. This paper proposes a novel car-following modeling framework by introducing the difficulty of driving task measured as the dynamic interaction between driving task demand and driver capability. Task difficulty is formulated based on the famous Task Capability Interface (TCI) model, which explains the motivations behind driver’s decision making. The proposed method is applied to enhance two popular CF models: Gipps’ model and IDM, and named as TDGipps and TDIDM respectively. The behavioral soundness of TDGipps and TDIDM are discussed and their stabilities are analyzed. Moreover, the enhanced models are calibrated with the vehicle trajectory data, and validated to explain both regular and human factor influenced CF behavior (which is distraction caused by hand-held mobile phone conversation in this paper). Both the models show better performance than their predecessors, especially in presence of human factors.
Resumo:
Creative arts therapy programs have been identified as effective interventions with adolescents affected by adversity. The current study provided a controlled trial of creative arts therapy to address the psychosocial needs of students from refugee backgrounds. Forty-two students participated in a therapy trial, comprising an intervention and control group. Mental health and behavioural difficulties were assessed pre and post intervention. Hopkins Symptoms Checklist-25 (HSCL-25) and the Strengths and Difficulties Questionnaire (SDQ) were used to assess wellbeing. Findings suggested an effect for a reduction in behavioural difficulties for the treatment group. A significant reduction in emotional symptoms was found for the treatment group. Findings provide empirical support for school-based creative arts therapy interventions specific to refugee young people.
Resumo:
Increasing epidemiological studies have shown that a rapid temperature change within 1 day is an independent risk factor for human health. This paper aimed to systematically review the epidemiological evidence on the relationship between diurnal temperature range (DTR) and human health and to propose future research directions. A literature search was conducted in October 2013 using the databases including PubMed, ScienceDirect, and EBSCO. Empirical studies regarding the relationship between DTR and mortality and morbidity were included. Twenty-five relevant studies were identified, among which, 11 investigated the relationship between DTR and mortality and 14 examined the impact of DTR on morbidity. The majority of existing studies reported that DTR was significantly associated with mortality and morbidity, particularly for cardiovascular and respiratory diseases. Notably, compared with adults, the elderly and children were more vulnerable to DTR effects. However, there were some inconsistencies regarding the susceptible groups, lag time, and threshold of DTR. The impact of DTR on human health may be confounded or modified by season, socioeconomic, and educational status. Further research is needed to further confirm the adverse effects of DTR in different geographical locations; examine the effects of DTR on the health of children aged one or under; explore extreme DTR effects on human health; analyze the difference of DTR effects on human health in different locations and the modified effects of potential confounding factors; and develop detailed preventive measures against large DTR, particularly for susceptible groups
Resumo:
Organisations use Enterprise Architecture (EA) to reduce organisational complexity, improve communication, align business and information technology (IT), and drive organisational change. Due to the dynamic nature of environmental and organisational factors, EA descriptions need to change over time to keep providing value for its stakeholders. Emerging business and IT trends, such as Service-Oriented Architecture (SOA), may impact EA frameworks, methodologies, governance and tools. However, the phenomenon of EA evolution is still poorly understood. Using Archer's morphogenetic theory as a foundation, this research conceptualises three analytical phases of EA evolution in organisations, namely conditioning, interaction and elaboration. Based on a case study with a government agency, this paper provides new empirically and theoretically grounded insights into EA evolution, in particular in relation to the introduction of SOA, and describes relevant generative mechanisms affecting EA evolution. By doing so, it builds a foundation to further examine the impact of other IT trends such as mobile or cloud-based solutions on EA evolution. At a practical level, the research delivers a model that can be used to guide professionals to manage EA and continually evolve it.
Resumo:
This study explores a new shopper type, ‘Sport Shoppers’, who are unique in their actions, attitudes and behaviors. We present evidence that these shoppers exhibit behavior similar to that of competitive athletes in that they view bargain shopping as an achievement domain. Data were collected through open-ended surveys, in-depth interviews and closet inventories. Thematic analysis of transcripts was undertaken based on three achievement goal categories; task-oriented, ego-oriented and social approval-oriented. Achievement goal theory is employed to offer an explanation of the Sport Shoppers’ behaviors and motivations. We argue the Sport Shopper is an economically viable and important shopper for fashion retailers to target.
Resumo:
The prospect of synthesizing ordered, covalently bonded structures directly on a surface has recently attracted considerable attention due to its fundamental interest and for potential applications in electronics and photonics. This prospective article focuses on efforts to synthesize and characterize epitaxial one- and two-dimensional (1D and 2D, respectively) polymeric networks on single crystal surfaces. Recent studies, mostly performed using scanning tunneling microscopy (STM), demonstrate the ability to induce polymerization based on Ullmann coupling, thermal dehalogenation and dehydration reactions. The 2D polymer networks synthesized to date have exhibited structural limitations and have been shown to form only small domains on the surface. We discuss different approaches to control 1D and 2D polymerization, with particular emphasis on the surface phenomena that are critical to the formation of larger ordered domains.
Resumo:
This paper presents a motion control system for guidance of an underactuated Unmanned Underwater Vehicle (UUV) on a helical trajectory. The control strategy is developed using Port-Hamiltonian theory and interconnection and damping assignment passivity-based control. Using energy routing, the trajectory of a virtual fully actuated plant is guided onto a vector field. A tracking controller is then used that commands the underactuated plant to follow the velocity of the virtual plant. An integral control is inserted between the two control layers, which adds robustness and disturbance rejection to the design.
Resumo:
This paper presents a motion control system for tracking of attitude and speed of an underactuated slender-hull unmanned underwater vehicle. The feedback control strategy is developed using the Port-Hamiltonian theory. By shaping of the target dynamics (desired dynamic response in closed loop) with particular attention to the target mass matrix, the influence of the unactuated dynamics on the controlled system is suppressed. This results in achievable dynamics independent of stable uncontrolled states. Throughout the design, the insight of the physical phenomena involved is used to propose the desired target dynamics. Integral action is added to the system for robustness and to reject steady disturbances. This is achieved via a change of coordinates that result in input-to-state stable (ISS) target dynamics. As a final step in the design, an anti-windup scheme is implemented to account for limited actuator capacity, namely saturation. The performance of the design is demonstrated through simulation with a high-fidelity model.