443 resultados para Newspaper layout and design.
Resumo:
1. Overview of hotspot identification (HSID)methods 2. Challenges with HSID 3. Bringing crash severity into the ‘mix’ 4. Case Study: Truck Involved Crashes in Arizona 5. Conclusions • Heavy duty trucks have different performance envelopes than passenger cars and have more difficulty weaving, accelerating, and braking • Passenger vehicles have extremely limited sight distance around trucks • Lane and shoulder widths affect truck crash risk more than passenger cars • Using PDOEs to model truck crashes results in a different set of locations to examine for possible engineering and behavioral problems • PDOE models point to higher societal cost locations, whereas frequency models point to higher crash frequency locations • PDOE models are less sensitive to unreported crashes • PDOE models are a great complement to existing practice
Resumo:
• What is risk compensation, and why is relevant to motor vehicle crashes? • Recent simulator work that revealed risk compensation • Current and future work on risk compensation
Resumo:
Video is commonly used as a method for recording embodied interaction for purposes of analysis and design and has been proposed as a useful ‘material’ for interaction designers to engage with. But video is not a straight forward reproduction of embodied activity – in themselves video recordings ‘flatten’ the space of embodied interaction, they impose a perspective on unfolding action, and remove the embodied spatial and social context within which embodied interaction unfolds. This does not mean that video is not a useful medium with which to engage as part of a process of investigating and designing for embodied interaction – but crucially, it requires that as people attempting to engage with video, designers own bodies and bodily understandings must be engaged with and brought into play. This paper describes and reflects upon our experiences of engaging with video in two different activities as part of a larger research project investigating the design of gestural interfaces for a dental surgery context.
Resumo:
This paper investigates energy saving potential of commercial building by living wall and green façade system using Envelope Thermal Transfer Value (ETTV) equation in Sub-tropical climate of Australia. Energy saving of four commercial buildings was quantified by applying living wall and green façade system to the west facing wall. A field experimental facility, from which temperature data of living wall system was collected, was used to quantify wall temperatures and heat gain under controlled conditions. The experimental parameters were accumulated with extensive data of existing commercial building to quantify energy saving. Based on temperature data of living wall system comprised of Australian native plants, equivalent temperature of living wall system has been computed. Then, shading coefficient of plants in green façade system has been included in mathematical equation and in graphical analysis. To minimize the air-conditioned load of commercial building, therefore to minimize the heat gain of commercial building, an analysis of building heat gain reduction by living wall and green façade system has been performed. Overall, cooling energy performance of commercial building before and after living wall and green façade system application has been examined. The quantified energy saving showed that only living wall system on opaque part of west facing wall can save 8-13 % of cooling energy consumption where as only green façade system on opaque part of west facing wall can save 9.5-18% cooling energy consumption of commercial building. Again, green façade system on fenestration system on west facing wall can save 28-35 % of cooling energy consumption where as combination of both living wall on opaque part of west facing wall and green façade on fenestration system on west facing wall can save 35-40% cooling energy consumption of commercial building in sub-tropical climate of Australia.
Resumo:
Although the design-build (DB) system has been demonstrated to be an effective delivery method and has gained popularity worldwide, it has not gained the same popularity in the construction market of China. The objective of this study was, theretofore, to investigate the barriers to entry in the DB market. A total of 22 entry barriers were first identified through an open-ended questionnaire survey with 15 top construction professionals in the construction market of China. A broad questionnaire survey was further conducted to prioritize these entry barriers. Statistical analysis of responses shows that the most dominant barriers to entry into the DB market are, namely, lack of design expertise, lack of interest from owners, lack of suitable organization structure, lack of DB specialists, and lack of credit record system. Analysis of variance indicates that there is no difference of opinions among the respondent groups of academia, government departments, state-owned company, and private company, at the 5% significance level, on most of the barriers to entry. Finally, the underlying dimensions of barriers to entry in the DB market were investigated through factor analysis. The results indicate that there are six major underlying dimensions of entry barriers in DB market, which include, namely, the competence of design-builders, difficulty in project procurement, characteristics of DB projects, lack of support from public sectors, the competence of DB owners, and the immaturity of DB market. These findings are useful for both potential and incumbent design-builders to understand and analyze the DB market in China.
Resumo:
Nursing personnel are consistently identified as one of the occupational groups most at risk of work-related musculoskeletal disorders. During the moving and handling of bariatric patients, the weight of the patient combined with atypical body mass contributes to a significant risk of injury to the care provider and patient. This is further compounded by the shape, mobility and co-operation of the patient. The aim of this study was determine user experiences and design requirements for mobile hoists with bariatric patients. Structured interviews were conducted with six experienced injury management staff from the Manual Task Services department of three hospitals in Adelaide, South Australia. All staff had experience in patient handling, the use of patient handling equipment and the provision of patient handling training. A series of open-ended questions were structured around five main themes: 1) patient factors; 2) building/vehicle space and design; 3) equipment and furniture; 4) communication; and 5) staff issues. Questions focussed on the use of mobile hoists for lifting and transferring bariatric patients. Interviews were supplemented with a walk-through of the hospital to view the types of mobile hoists used, and the location and storage of equipment. Across the three hospitals there were differing classification systems to define bariatric patients. Ensuring patient dignity, respect and privacy were viewed as important in the management and rehabilitation of bariatric patients. Storage and space constraints were considered factors restricting the use of mobile floor hoists, with ceiling hoists being the preferred method for patient transfers. When using mobile floor hoists, the forces required to push, pull and manoeuvre, as well as sudden unstable movements of the hoist were considered important risks factors giving rise to a risk of injury to the care provider. Record keeping and purchasing policies appeared to inhibit the effective use of patient handling equipment. The moving and handling of bariatric patients presents complex and challenging issues. A co-ordinated and collaborative approach for moving and handling bariatric patients is needed across the range of care providers. Designers must consider both user and patient requirements.
Resumo:
Artists and designers are positioned at the centre of the 21st century creative economy. In order to recognise and make the most of the opportunities afforded by this new era, artists and designers still require the creativity, disciplinary depth of knowledge, and technical skills traditionally possessed by professionals in these fields – skills which are a core strength of higher and further art and design education. However, they may also require a range of other, ‘21st century’ creative capabilities which are harder to define, teach for and assess, and are not the focus of traditional art and design pedagogies. This article draws upon the findings of nine in-depth interviews with award-winning Australian artists and designers about their careers and working practices, along with recent international research about the characteristics of the 21st century creative career, in order to highlight the importance of certain professional capabilities for art and design. It discusses the implications of these findings for art and design educators in universities, and curricular and pedagogic considerations associated with embedding these capabilities into undergraduate courses.
Resumo:
In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.
Resumo:
This paper investigates cooling energy performance of commercial building before and after green roof and living wall application based on integrated building heat gain model developed from Overall Thermal Transfer Value (OTTV) of building wall and steady state heat transfer process of roof in sub-tropical climate. Using the modelled equation and eQUEST energy simulation tool, commercial building envelope parameters and relevant heat gain parameters have been accumulated to analyse the heat gain and cooling energy consumption of commercial building. Real life commercial building envelope and air-conditioned load data for the sub-tropical climate zone have been collected and compared with the modelled analysis. Relevant temperature data required for living wall and green roof analysis have been collected from experimental setup comprised of both green roof and west facing living wall. Then, Commercial building heat flux and cooling energy performance before and after green roof and living wall application have been scrutinized.
Resumo:
"Bouncing Back: Resilient Design for Brisbane" was an opportunity for QUT students to communicate their inspiring design responses to adversity, to the larger Brisbane community. The exhibition demonstrates new and innovative ways of thinking about our cities, and how they are built to be resilient and to suit extreme environmental conditions. The challenge for architecture students is to address the state of architecture as a reflection of today's world and to consider how design fits into the 21st century. Students have explored notions of 'Urban Resilience' from multiple perspectives, including emergency design while facing flooding, flood proof housing and urban designs.
Resumo:
Public participate in the planning and design of major public infrastructure and construction (PIC) projects is crucial to their success, as the interests of different stakeholders can be systematically captured and built into the finalised scheme. However, public participation may not always yield a mutually acceptable solution, especially when the interests of stakeholders are diverse and conflicting. Confrontations and disputes can arise unless the concerns or needs of the community are carefully analysed and addressed. The aim of the paper is to propose a systematic method of analysing stakeholder concerns relating to PIC projects by examining the degree of consensus and/or conflict involved. The results of a questionnaire survey and a series of interviews with different entities are provided, which indicate the existence of a significant divergence of views among stakeholder groups and that conflicts arise when there is a mismatch between peoples’ perception concerning money and happiness on the one hand and development and damages on the other. Policy and decision-makers should strive to resolve at least the majority of conflicts that arise throughout the lifecycle of major PIC projects so as to maximise their chance of success.
Resumo:
A study of historic examples of buildings that were designed for disassembly reveals a number of important lessons in the technology employed. These lessons can inform designers such that they may better design for disassembly to attempt to increase the rates of reuse and recycling in the building industry.